IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/111404.html
   My bibliography  Save this paper

Developing a Sustainable Concept for Urban Last-Mile Delivery

Author

Listed:
  • Siegfried, Patrick
  • Zhang, John Jiyuan

Abstract

In relation to the fast development of e-commerce and rapid increasing of parcels, urban logistic sector is facing the challenge of sustainability. Especially, last-mile delivery as the last step of goods transport, it connects to customers’ satisfaction, cost efficiency of logistic companies, and more and more public expectations to sustainability of urban logistics. To handle with the complexity of urban logistics conditions, governments and logistics companies should develop a co-operating strategy for sustainability of urban last-mile delivery. This paper is based on data collection from the long-term empirical research and a survey to the e-commerce users in Germany and China to develop a sustainable concept for the urban last-mile delivery. The key to the development of concept is to create a balance among the requirements of customers, the competition abilities of logistics companies and the public interest.

Suggested Citation

  • Siegfried, Patrick & Zhang, John Jiyuan, 2021. "Developing a Sustainable Concept for Urban Last-Mile Delivery," MPRA Paper 111404, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:111404
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/111404/1/MPRA_paper_111404.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siegfried, Patrick, 2014. "The importance of the service sector for the industry," MPRA Paper 111408, University Library of Munich, Germany.
    2. Wang, Yuan & Zhang, Dongxiang & Liu, Qing & Shen, Fumin & Lee, Loo Hay, 2016. "Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 279-293.
    3. Maurizio Faccio & Mauro Gamberi, 2015. "New City Logistics Paradigm: From the “Last Mile” to the “Last 50 Miles” Sustainable Distribution," Sustainability, MDPI, vol. 7(11), pages 1-22, November.
    4. Park, Minyoung & Regan, Amelia, 2004. "Issues in Emerging Home Delivery Operations," University of California Transportation Center, Working Papers qt3754142p, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Haibo & Alidaee, Bahram, 2023. "White-glove service delivery: A quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Olsson & Daniel Hellström & Henrik Pålsson, 2019. "Framework of Last Mile Logistics Research: A Systematic Review of the Literature," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    2. Juan Guillermo Urzúa-Morales & Juan Pedro Sepulveda-Rojas & Miguel Alfaro & Guillermo Fuertes & Rodrigo Ternero & Manuel Vargas, 2020. "Logistic Modeling of the Last Mile: Case Study Santiago, Chile," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    3. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Lei Yang & Yiji Cai & Jiahui Hong & Yongqiang Shi & Zhiyong Zhang, 2016. "Urban Distribution Mode Selection under Low Carbon Economy—A Case Study of Guangzhou City," Sustainability, MDPI, vol. 8(7), pages 1-22, July.
    5. Ermagun, Alireza & Stathopoulos, Amanda, 2018. "To bid or not to bid: An empirical study of the supply determinants of crowd-shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 468-483.
    6. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    7. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.
    8. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    9. Baldi, Mauro Maria & Manerba, Daniele & Perboli, Guido & Tadei, Roberto, 2019. "A Generalized Bin Packing Problem for parcel delivery in last-mile logistics," European Journal of Operational Research, Elsevier, vol. 274(3), pages 990-999.
    10. Snežana Tadić & Mladen Krstić & Željko Stević & Miloš Veljović, 2023. "Locating Collection and Delivery Points Using the p -Median Location Problem," Logistics, MDPI, vol. 7(1), pages 1-17, February.
    11. Andrea Temporelli & Paola Cristina Brambilla & Elisabetta Brivio & Pierpaolo Girardi, 2022. "Last Mile Logistics Life Cycle Assessment: A Comparative Analysis from Diesel Van to E-Cargo Bike," Energies, MDPI, vol. 15(20), pages 1-18, October.
    12. Marlin Ulmer & Martin Savelsbergh, 2020. "Workforce Scheduling in the Era of Crowdsourced Delivery," Transportation Science, INFORMS, vol. 54(4), pages 1113-1133, July.
    13. Bathke, Henrik & Hartmann, Evi, 2021. "Accepting a crowdsourced delivery - A choice-based conjoint analysis," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 65-95, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    14. Haiyan Yu & Xianwei Luo & Tengyu Wu, 0. "Online pickup and delivery problem with constrained capacity to minimize latency," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-20.
    15. Xiao, Fei & Wang, Haijun & Guo, Shuojia & Guan, Xu & Liu, Baoshan, 2021. "Efficient and truthful multi-attribute auctions for crowdsourced delivery," International Journal of Production Economics, Elsevier, vol. 240(C).
    16. Agnieszka Szmelter-Jarosz & Jagienka Rześny-Cieplińska, 2019. "Priorities of Urban Transport System Stakeholders According to Crowd Logistics Solutions in City Areas. A Sustainability Perspective," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    17. Giuseppe Aiello & Rosalinda Inguanta & Giusj D’Angelo & Mario Venticinque, 2021. "Energy Consumption Model of Aerial Urban Logistic Infrastructures," Energies, MDPI, vol. 14(18), pages 1-19, September.
    18. Haiyan Yu & Xianwei Luo & Tengyu Wu, 2022. "Online pickup and delivery problem with constrained capacity to minimize latency," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 974-993, July.
    19. Fernanda Alves de Araújo & João Gilberto Mendes dos Reis & Marcia Terra da Silva & Emel Aktas, 2022. "A Fuzzy Analytic Hierarchy Process Model to Evaluate Logistics Service Expectations and Delivery Methods in Last-Mile Delivery in Brazil," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    20. Raúl Martín-Santamaría & Ana D. López-Sánchez & María Luisa Delgado-Jalón & J. Manuel Colmenar, 2021. "An Efficient Algorithm for Crowd Logistics Optimization," Mathematics, MDPI, vol. 9(5), pages 1-19, March.

    More about this item

    Keywords

    Last-Mile Delivery; Urban Logistic; Sustainability; Sustainable Delivery; E-Commerce; Parcel Delivery; Logistic Solution;
    All these keywords.

    JEL classification:

    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General
    • P25 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Urban, Rural, and Regional Economics
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:111404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.