IDEAS home Printed from https://ideas.repec.org/p/pav/demwpp/demwp0149.html
   My bibliography  Save this paper

Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models

Author

Listed:
  • Ioannis Ntzoufras

    (Department of Statistics, Athens University of Economics and Business)

  • Claudia Tarantola

    (Department of Economics and Management, University of Pavia)

  • Monia Lupparelli

    (Department of Statistical Sciences, University of Bologna)

Abstract

Bayesian methods for graphical log-linear marginal models has not been developed in the same extend as traditional frequentist approaches. In this work, we introduce a novel Bayesian approach for quantitative learning for such models. They belong to curved exponential families that are difficult to handle from a Bayesian perspective. Furthermore, the likelihood cannot be analytically expressed as a function of the marginal log-linear interactions, but only in terms of cell counts or probabilities. Posterior distributions cannot be directly obtained, and MCMC methods are needed. Finally, a well-defined model requires parameter values that lead to compatible marginal probabilities. Hence, any MCMC should account for this important restriction. We construct a fully automatic and efficient MCMC strategy for quantitative learning for graphical log-linear marginal models that handles these problems. While the prior is expressed in terms of the marginal log-linear interactions, we build an MCMC algorithm which employs a proposal on the probability parameter space. The corresponding proposal on the marginal log-linear interactions is obtained via parameter transformations. By this strategy, we achieve to move within the desired target space. At each step we directly work with well-defined probability distributions. Moreover, we can exploit a conditional conjugate setup to build an efficient proposal on probability parameters. The proposed methodology is illustrated by a simulation study and a real dataset.

Suggested Citation

  • Ioannis Ntzoufras & Claudia Tarantola & Monia Lupparelli, 2018. "Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models," DEM Working Papers Series 149, University of Pavia, Department of Economics and Management.
  • Handle: RePEc:pav:demwpp:demwp0149
    as

    Download full text from publisher

    File URL: http://dem-web.unipv.it/web/docs/dipeco/quad/ps/RePEc/pav/demwpp/DEMWP0149.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartolucci, Francesco & Scaccia, Luisa & Farcomeni, Alessio, 2012. "Bayesian inference through encompassing priors and importance sampling for a class of marginal models for categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4067-4080.
    2. Tamás Rudas & Wicher P. Bergsma, 2004. "On applications of marginal models for categorical data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 15-37.
    3. Thomas Richardson, 2003. "Markov Properties for Acyclic Directed Mixed Graphs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 145-157, March.
    4. Ntzoufras, Ioannis & Tarantola, Claudia, 2013. "Conjugate and conditional conjugate Bayesian analysis of discrete graphical models of marginal independence," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 161-177.
    5. Bahjat F. Qaqish & Anastasia Ivanova, 2006. "Multivariate logistic models," Biometrika, Biometrika Trust, vol. 93(4), pages 1011-1017, December.
    6. Mathias Drton & Thomas S. Richardson, 2008. "Binary models for marginal independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 287-309, April.
    7. Robin J. Evans & Thomas S. Richardson, 2013. "Marginal log-linear parameters for graphical Markov models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 743-768, September.
    8. Robin J. Evans, 2016. "Graphs for Margins of Bayesian Networks," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 625-648, September.
    9. Monia Lupparelli & Giovanni M. Marchetti & Wicher P. Bergsma, 2009. "Parameterizations and Fitting of Bi‐directed Graph Models to Categorical Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 559-576, September.
    10. Tamás Rudas & Wicher P. Bergsma & Renáta Németh, 2010. "Marginal log-linear parameterization of conditional independence models," Biometrika, Biometrika Trust, vol. 97(4), pages 1006-1012.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federica Nicolussi & Manuela Cazzaro, 2020. "Context-specific independencies in hierarchical multinomial marginal models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 767-786, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenza Rossi & Emilio Zanetti Chini, 2016. "Firms’ Dynamics and Business Cycle: New Disaggregated Data," DEM Working Papers Series 123, University of Pavia, Department of Economics and Management.
    2. Boitani, Andrea & Punzo, Chiara, 2019. "Banks’ leverage behaviour in a two-agent new Keynesian model," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 347-359.
    3. Ntzoufras, Ioannis & Tarantola, Claudia, 2013. "Conjugate and conditional conjugate Bayesian analysis of discrete graphical models of marginal independence," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 161-177.
    4. Alberto Roverato, 2015. "Log-mean Linear Parameterization for Discrete Graphical Models of Marginal Independence and the Analysis of Dichotomizations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 627-648, June.
    5. Robin J. Evans & Thomas S. Richardson, 2013. "Marginal log-linear parameters for graphical Markov models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 743-768, September.
    6. Monia Lupparelli & Giovanni M. Marchetti & Wicher P. Bergsma, 2009. "Parameterizations and Fitting of Bi‐directed Graph Models to Categorical Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 559-576, September.
    7. Claudia Tarantola & Ioannis Ntzoufras, 2012. "Bayesian Analysis of Graphical Models of Marginal Independence for Three Way Contingency Tables," Quaderni di Dipartimento 172, University of Pavia, Department of Economics and Quantitative Methods.
    8. Federica Nicolussi & Manuela Cazzaro, 2020. "Context-specific independencies in hierarchical multinomial marginal models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 767-786, December.
    9. Navascués Miguel & Wolfe Elie, 2020. "The Inflation Technique Completely Solves the Causal Compatibility Problem," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 70-91, January.
    10. Evans, R.J. & Forcina, A., 2013. "Two algorithms for fitting constrained marginal models," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 1-7.
    11. Ioannis Ntzoufras & Claudia Tarantola, 2012. "Conjugate and Conditional Conjugate Bayesian Analysis of Discrete Graphical Models of Marginal Independence," Quaderni di Dipartimento 178, University of Pavia, Department of Economics and Quantitative Methods.
    12. Colombi, R. & Giordano, S., 2012. "Graphical models for multivariate Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 90-103.
    13. Colombi, Roberto, 2020. "Selection tests for possibly misspecified hierarchical multinomial marginal models," Econometrics and Statistics, Elsevier, vol. 16(C), pages 136-147.
    14. Federica Nicolussi & Fulvia Mecatti, 2016. "A smooth subclass of graphical models for chain graph: towards measuring gender gaps," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(1), pages 27-41, January.
    15. F Richard Guo & Emilija Perković & Andrea Rotnitzky, 2023. "Variable elimination, graph reduction and the efficient g-formula," Biometrika, Biometrika Trust, vol. 110(3), pages 739-761.
    16. Kayvan Sadeghi & Alessandro Rinaldo, 2020. "Hierarchical models for independence structures of networks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 439-457, August.
    17. Colombi, R. & Giordano, S., 2015. "Multiple hidden Markov models for categorical time series," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 19-30.
    18. Battey, H.S. & Cox, D.R., 2022. "Some aspects of non-standard multivariate analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. Nanny Wermuth & Kayvan Sadeghi, 2012. "Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 215-252, June.
    20. Francesco Bartolucci & Alessio Farcomeni & Luisa Scaccia, 2017. "A Nonparametric Multidimensional Latent Class IRT Model in a Bayesian Framework," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 952-978, December.

    More about this item

    Keywords

    Graphical Models; Marginal Log-Linear Parameterisation; Markov Chain Monte Carlo Computation.;
    All these keywords.

    JEL classification:

    • E12 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Keynes; Keynesian; Post-Keynesian; Modern Monetary Theory
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pav:demwpp:demwp0149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alice Albonico (email available below). General contact details of provider: https://edirc.repec.org/data/dppavit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.