IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/us7p4_v1.html
   My bibliography  Save this paper

Emerging Smart Cities Job Profiles and Competencies: A Framework for Digital and Green Transition

Author

Listed:
  • FITSILIS, Panos
  • Damasiotis, Vyron
  • Kyriatzis, Vasileios
  • Tsoutsa, Paraskevi

Abstract

The transformation of urban living, driven by the advent of smart cities, extends beyond changes in the physical landscape and the introduction of smart systems. It necessitates a profound reconfiguration of employment dynamics within urban ecosystems. This study addresses the critical challenge of aligning job roles and competencies with the demands of smart city development, focusing on the need for a transformative realignment of urban employment to meet these new requirements. The research identifies emerging job roles and competencies essential for smart city development, focusing on professions such as data analysts, urban planners, sustainability managers, and cybersecurity specialists. Methodologically, the study employs a comprehensive analysis of secondary data to explore these roles, and the skills required. The findings highlight the urgent need for educational curricula and training programs tailored to the specialized demands of smart cities, emphasizing technological and environmental expertise to manage urban complexity, resilience, and the green transition. This research offers valuable insights for policymakers, educators, and smart city managers, influencing and guiding urban development towards a future characterized by technological innovation and environmental sustainability. The role of city staff is underscored as crucial in achieving these objectives.

Suggested Citation

  • FITSILIS, Panos & Damasiotis, Vyron & Kyriatzis, Vasileios & Tsoutsa, Paraskevi, 2025. "Emerging Smart Cities Job Profiles and Competencies: A Framework for Digital and Green Transition," SocArXiv us7p4_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:us7p4_v1
    DOI: 10.31219/osf.io/us7p4_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/68c1e5efc569e8c87274e8c8/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/us7p4_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Silvia Mazzetto, 2024. "A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development," Sustainability, MDPI, vol. 16(19), pages 1-33, September.
    2. Margarita Angelidou, 2017. "The Role of Smart City Characteristics in the Plans of Fifteen Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(4), pages 3-28, October.
    3. Paraskevi Tsoutsa & Panos Fitsilis & Leonidas Anthopoulos & Omiros Ragos, 2021. "Nexus Services in Smart City Ecosystems," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(2), pages 431-451, June.
    4. Irene Arcelay & Aitor Goti & Aitor Oyarbide-Zubillaga & Tugce Akyazi & Elisabete Alberdi & Pablo Garcia-Bringas, 2021. "Definition of the Future Skills Needs of Job Profiles in the Renewable Energy Sector," Energies, MDPI, vol. 14(9), pages 1-23, May.
    5. Goulden, Murray & Spence, Alexa, 2015. "Caught in the middle: The role of the Facilities Manager in organisational energy use," Energy Policy, Elsevier, vol. 85(C), pages 280-287.
    6. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    7. Paulo Antonio Maldonado Silveira Alonso Munhoz & Fabricio da Costa Dias & Christine Kowal Chinelli & André Luis Azevedo Guedes & João Alberto Neves dos Santos & Wainer da Silveira e Silva & Carlos Alb, 2020. "Smart Mobility: The Main Drivers for Increasing the Intelligence of Urban Mobility," Sustainability, MDPI, vol. 12(24), pages 1-25, December.
    8. Ahmad Ali Hakam Dani & Suhono Harso Supangkat & Fetty Fitriyanti Lubis & I Gusti Bagus Baskara Nugraha & Rezky Kinanda & Irma Rizkia, 2023. "Development of a Smart City Platform Based on Digital Twin Technology for Monitoring and Supporting Decision-Making," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    9. Monica Schoch-Spana & Kimberly Gill & Divya Hosangadi & Cathy Slemp & Robert Burhans & Janet Zeis & Eric G. Carbone & Jonathan Links, 2019. "The COPEWELL Rubric: A Self-Assessment Toolkit to Strengthen Community Resilience to Disasters," IJERPH, MDPI, vol. 16(13), pages 1-17, July.
    10. Ernesto D. R. Santibanez Gonzalez & Vinay Kandpal & Marcio Machado & Mauro Luiz Martens & Sushobhan Majumdar, 2023. "A Bibliometric Analysis of Circular Economies through Sustainable Smart Cities," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
    11. Thomas K.F. Chiu & Ching-sing Chai, 2020. "Sustainable Curriculum Planning for Artificial Intelligence Education: A Self-Determination Theory Perspective," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    12. Leonardo Juan Ramirez Lopez & Angela Ivette Grijalba Castro, 2020. "Sustainability and Resilience in Smart City Planning: A Review," Sustainability, MDPI, vol. 13(1), pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elda Cina & Ersin Elbasi & Gremina Elmazi & Zakwan AlArnaout, 2025. "The Role of AI in Predictive Modelling for Sustainable Urban Development: Challenges and Opportunities," Sustainability, MDPI, vol. 17(11), pages 1-39, June.
    2. Maja Rosi & Lora Strmsek & Dejan Dragan & Bojan Rosi, 2021. "Walkable Neighbourhoods In Smart Cities," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 21, pages 547-563.
    3. Federico Delfino & Paola Laiolo & Federico Delfino, 2019. "Living Labs and Partnerships for Progress-How Universities can Drive the Process towards the Sustainable City," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 18(2), pages 71-73, April.
    4. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    5. Chisom E. Ogbogu & Jesse Thornburg & Samuel O. Okozi, 2025. "Smart Grid Fault Mitigation and Cybersecurity with Wide-Area Measurement Systems: A Review," Energies, MDPI, vol. 18(4), pages 1-26, February.
    6. Benoît Desmarchelier & Faridah Djellal & Faïz Gallouj, 2018. "Public Service Innovation Networks (PSINs): Collaborating for Innovation and Value Creation," Working Papers halshs-01934275, HAL.
    7. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    8. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    9. Jinchao Huang & Shuang Meng & Jiajie Yu, 2023. "The Effects of the Low-Carbon Pilot City Program on Green Innovation: Evidence from China," Land, MDPI, vol. 12(8), pages 1-26, August.
    10. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    11. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    12. Peter DŽUPKA & Marek HORVATH, 2021. "Urban Smart-Mobility Projects Evaluation: A Literature Review," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 16(4), pages 55-76, November.
    13. Lill Sarv & Ralf-Martin Soe, 2021. "Transition towards Smart City: The Case of Tallinn," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    14. Ágota Bányai & Tamás Bányai, 2022. "Real-Time Maintenance Policy Optimization in Manufacturing Systems: An Energy Efficiency and Emission-Based Approach," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    15. Anna Borkovcová & Miloslava Černá & Marcela Sokolová, 2022. "Blockchain in the Energy Sector—Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    16. Roman Dostál & Josef Kocourek & Aneta Matysková & Karolína Moudrá & Vojtěch Nižňanský, 2021. "The Implementation of the Smart City Process—Researchers’ Knowledge in Detecting Transport System Defects," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    17. Benoît Desmarchelier & Faridah Djellal & Faïz Gallouj, 2019. "Towards a servitization of innovation networks: from traditional innovation networks to public service innovation networks for social innovation," Post-Print halshs-03177975, HAL.
    18. Yang, Zhen & Gao, Weijun & Han, Qing & Qi, Liyan, 2024. "Aggravating or alleviating? Smart city construction and urban inequality in China," Technology in Society, Elsevier, vol. 77(C).
    19. Ramona Simut & Ciprian Simut & Daniel Badulescu & Alina Badulescu, 2024. "Artificial Intelligence and the Modelling of Teachers’ Competencies," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(65), pages 181-181, February.
    20. Zhou, Kuo & Wang, Qiaochu & Tao, Yunqing & Li, Xiaofan, 2024. "Information infrastructure construction and firm export performance in China," Research in International Business and Finance, Elsevier, vol. 70(PA).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:us7p4_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.