IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/u8spj.html
   My bibliography  Save this paper

Improving metadata infrastructure for complex surveys: Insights from the Fragile Families Challenge

Author

Listed:
  • Kindel, Alexander

    (Princeton University)

  • Bansal, Vineet
  • Catena, Kristin
  • Hartshorne, Thomas
  • Jaeger, Kate
  • Koffman, Dawn
  • McLanahan, Sara
  • Phillips, Maya
  • Rouhani, Shiva
  • Vinh, Ryan

Abstract

Researchers rely on metadata systems to prepare data for analysis. As the complexity of datasets increases and the breadth of data analysis practices grow, existing metadata systems can limit the efficiency and quality of data preparation. This article describes the redesign of a metadata system supporting the Fragile Families and Child Wellbeing Study based on the experiences of participants in the Fragile Families Challenge. We demonstrate how treating metadata as data—that is, releasing comprehensive information about variables in a format amenable to both automated and manual processing—can make the task of data preparation less arduous and less error-prone for all types of data analysis. We hope that our work will facilitate new applications of machine learning methods to longitudinal surveys and inspire research on data preparation in the social sciences. We have open-sourced the tools we created so that others can use and improve them.

Suggested Citation

  • Kindel, Alexander & Bansal, Vineet & Catena, Kristin & Hartshorne, Thomas & Jaeger, Kate & Koffman, Dawn & McLanahan, Sara & Phillips, Maya & Rouhani, Shiva & Vinh, Ryan, 2018. "Improving metadata infrastructure for complex surveys: Insights from the Fragile Families Challenge," SocArXiv u8spj, Center for Open Science.
  • Handle: RePEc:osf:socarx:u8spj
    DOI: 10.31219/osf.io/u8spj
    as

    Download full text from publisher

    File URL: https://osf.io/download/5ba1348b57c3e4001b3a43c7/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/u8spj?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    2. Reichman, Nancy E. & Teitler, Julien O. & Garfinkel, Irwin & McLanahan, Sara S., 2001. "Fragile Families: sample and design," Children and Youth Services Review, Elsevier, vol. 23(4-5), pages 303-326.
    3. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    4. Sandrah Eckel & Roger Peng, 2009. "Interacting with local and remote data repositories using the stashR package," Computational Statistics, Springer, vol. 24(2), pages 247-254, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Watts, Duncan J & Beck, Emorie D & Bienenstock, Elisa Jayne & Bowers, Jake & Frank, Aaron & Grubesic, Anthony & Hofman, Jake M. & Rohrer, Julia Marie & Salganik, Matthew, 2018. "Explanation, prediction, and causality: Three sides of the same coin?," OSF Preprints u6vz5, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Kindel & Vineet Bansal & Kristin Catena & Thomas Hartshorne & Kate Jaeger, 2018. "Improving metadata infrastructure for complex surveys: 
Insights from the Fragile Families Challenge," Working Papers wp18-10-ff, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
    2. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    3. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    4. Galdo, Virgilio & Li, Yue & Rama, Martin, 2021. "Identifying urban areas by combining human judgment and machine learning: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    5. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    6. Onder Ozgur & Erdal Tanas Karagol & Fatih Cemil Ozbugday, 2021. "Machine learning approach to drivers of bank lending: evidence from an emerging economy," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-29, December.
    7. John Aoga & Juhee Bae & Stefanija Veljanoska & Siegfried Nijssen & Pierre Schaus, 2020. "Impact of weather factors on migration intention using machine learning algorithms," Papers 2012.02794, arXiv.org.
    8. Paolo Brunori & Vito Peragine & Laura Serlenga, 2019. "Upward and downward bias when measuring inequality of opportunity," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(4), pages 635-661, April.
    9. Helmut Wasserbacher & Martin Spindler, 2022. "Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls," Digital Finance, Springer, vol. 4(1), pages 63-88, March.
    10. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    11. Manav Raj & Robert Seamans, 2019. "Primer on artificial intelligence and robotics," Journal of Organization Design, Springer;Organizational Design Community, vol. 8(1), pages 1-14, December.
    12. Plakandaras, Vasilios & Gogas, Periklis & Papadimitriou, Theophilos & Gupta, Rangan, 2019. "A re-evaluation of the term spread as a leading indicator," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 476-492.
    13. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    14. Falco J. Bargagli-Stoffi & Jan Niederreiter & Massimo Riccaboni, 2020. "Supervised learning for the prediction of firm dynamics," Papers 2009.06413, arXiv.org.
    15. Bauer, Kevin & Pfeuffer, Nicolas & Abdel-Karim, Benjamin M. & Hinz, Oliver & Kosfeld, Michael, 2020. "The terminator of social welfare? The economic consequences of algorithmic discrimination," SAFE Working Paper Series 287, Leibniz Institute for Financial Research SAFE.
    16. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    17. Michael Bailey & Drew Johnston & Theresa Kuchler & Johannes Stroebel & Arlene Wong, 2022. "Peer Effects in Product Adoption," American Economic Journal: Applied Economics, American Economic Association, vol. 14(3), pages 488-526, July.
    18. Juhee Bae & John Aoga & Stefanija Veljanoska & Siegfried Nijssen & Pierre Schaus, 2020. "Impact of Weather Factors on Migration Intention using Machine Learning Algorithms," LIDAM Discussion Papers IRES 2020034, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    19. Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
    20. Michael T. Kiley, 2020. "Financial Conditions and Economic Activity: Insights from Machine Learning," Finance and Economics Discussion Series 2020-095, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:u8spj. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.