IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/d4dcu_v1.html
   My bibliography  Save this paper

Bayes Factor Design Analysis: Planning for compelling evidence

Author

Listed:
  • Schönbrodt, Felix D.

    (Ludwig-Maximilians-Universität München)

  • Wagenmakers, Eric-Jan

    (University of Amsterdam)

Abstract

A sizeable literature exists on the use of frequentist power analysis in the null-hypothesis significance testing (NHST) paradigm to facilitate the design of informative experiments. In contrast, there is almost no literature that discusses the design of experiments when Bayes factors (BFs) are used as a measure of evidence. Here we explore Bayes Factor Design Analysis (BFDA) as a useful tool to design studies for maximum efficiency and informativeness. We elaborate on three possible BF designs, (a) a fixed-n design, (b) an open-ended Sequential Bayes Factor (SBF) design, where researchers can test after each participant and can stop data collection whenever there is strong evidence for either H1 or H0, and (c) a modified SBF design that defines a maximal sample size where data collection is stopped regardless of the current state of evidence. We demonstrate how the properties of each design (i.e., expected strength of evi- dence, expected sample size, expected probability of misleading evidence, expected probability of weak evidence) can be evaluated using Monte Carlo simulations and equip researchers with the necessary information to compute their own Bayesian design analyses.

Suggested Citation

  • Schönbrodt, Felix D. & Wagenmakers, Eric-Jan, 2016. "Bayes Factor Design Analysis: Planning for compelling evidence," OSF Preprints d4dcu_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:d4dcu_v1
    DOI: 10.31219/osf.io/d4dcu_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/580fa18db83f6901ddc945e9/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/d4dcu_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tim van Erven & Peter Grünwald & Steven de Rooij, 2012. "Catching up faster by switching sooner: a predictive approach to adaptive estimation with an application to the AIC–BIC dilemma," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 361-417, June.
    2. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claire Copeland & Britta Turner & Gareth Powells & Kevin Wilson, 2022. "In Search of Complementarity: Insights from an Exercise in Quantifying Qualitative Energy Futures," Energies, MDPI, vol. 15(15), pages 1-21, July.
    2. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "How Experience Confirms the Gambler's Fallacy when Sample Size is Neglected," OSF Preprints m5xsk, Center for Open Science.
    3. Dai, Min & Jia, Yanwei & Kou, Steven, 2021. "The wisdom of the crowd and prediction markets," Journal of Econometrics, Elsevier, vol. 222(1), pages 561-578.
    4. A Zuashkiani & D Banjevic & A K S Jardine, 2009. "Estimating parameters of proportional hazards model based on expert knowledge and statistical data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1621-1636, December.
    5. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    6. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    7. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.
    8. Constantinou Anthony Costa & Fenton Norman Elliott, 2012. "Solving the Problem of Inadequate Scoring Rules for Assessing Probabilistic Football Forecast Models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-14, March.
    9. Durbach, Ian N. & Stewart, Theodor J., 2012. "A comparison of simplified value function approaches for treating uncertainty in multi-criteria decision analysis," Omega, Elsevier, vol. 40(4), pages 456-464.
    10. Johan René van Dorp & Salvador Cruz Rambaud & José García Pérez & Rafael Herrerías Pleguezuelo, 2007. "An Elicitation Procedure for the Generalized Trapezoidal Distribution with a Uniform Central Stage," Decision Analysis, INFORMS, vol. 4(3), pages 156-166, September.
    11. William N. Caballero & Ethan Gharst & David Banks & Jeffery D. Weir, 2023. "Multipolar Security Cooperation Planning: A Multiobjective, Adversarial-Risk-Analysis Approach," Decision Analysis, INFORMS, vol. 20(1), pages 16-39, March.
    12. Anna Chrysafi & Vili Virkki & Mika Jalava & Vilma Sandström & Johannes Piipponen & Miina Porkka & Steven J. Lade & Kelsey Mere & Lan Wang-Erlandsson & Laura Scherer & Lauren S. Andersen & Elena Bennet, 2022. "Quantifying Earth system interactions for sustainable food production via expert elicitation," Nature Sustainability, Nature, vol. 5(10), pages 830-842, October.
    13. Helton, Jon C. & Sallaberry, Cedric J., 2009. "Conceptual basis for the definition and calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 677-698.
    14. Nicholas Longford, 2014. "Incompatibility of estimation and policy objectives. An example from small-area estimation," Economics Working Papers 1447, Department of Economics and Business, Universitat Pompeu Fabra.
    15. Chad Kendall & Tommaso Nannicini & Francesco Trebbi, 2015. "How Do Voters Respond to Information? Evidence from a Randomized Campaign," American Economic Review, American Economic Association, vol. 105(1), pages 322-353, January.
    16. Christopher C. Hadlock & J. Eric Bickel, 2017. "Johnson Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 14(1), pages 35-64, March.
    17. Nicholas T. Longford, 2015. "Policy-Oriented Inference And The Analyst-Client Cooperation. An Example From Small-Area Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 16(1), pages 65-82, March.
    18. Zhang, Yongli & Yang, Yuhong, 2015. "Cross-validation for selecting a model selection procedure," Journal of Econometrics, Elsevier, vol. 187(1), pages 95-112.
    19. Schmidli, Heinz & Neuenschwander, Beat & Friede, Tim, 2017. "Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 100-110.
    20. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:d4dcu_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.