IDEAS home Printed from
   My bibliography  Save this paper

Measuring the Unmeasurable: An Application of Uncertainty Quantification to Financial Portfolios


  • Jingnan Chen

    () (Singapore University of Technology and Design)

  • Mark D. Flood

    () (Office of Financial Research)

  • Richard B. Sowers

    () (University of Illinois at Urbana-Champaign)


We extract from the yield curve a new measure of fundamental economic uncertainty, based on McDiarmid's distance and related methods for optimal uncertainty quantification (OUQ). OUQ seeks analytical bounds on a system's behavior, even where the underlying data-generating process and system response function are incompletely specified. We use OUQ to stress test a simple fixed-income portfolio, certifying its safety—i.e., that potential losses will be "small" in an appropriate sense. The results give explicit tradeoffs between: scenario count, maximum loss, test horizon, and confidence level. Unfortunately, uncertainty peaks in late 2008, weakening certification assurances just when they are needed most.

Suggested Citation

  • Jingnan Chen & Mark D. Flood & Richard B. Sowers, 2015. "Measuring the Unmeasurable: An Application of Uncertainty Quantification to Financial Portfolios," Working Papers 15-19, Office of Financial Research, US Department of the Treasury.
  • Handle: RePEc:ofr:wpaper:15-19

    Download full text from publisher

    File URL:
    File Function: First version, 2015
    Download Restriction: no

    References listed on IDEAS

    1. Beverly Hirtle & Til Schuermann & Kevin J. Stiroh, 2009. "Macroprudential supervision of financial institutions: lessons from the SCAP," Staff Reports 409, Federal Reserve Bank of New York.
    2. Antonella Foglia, 2009. "Stress Testing Credit Risk: A Survey of Authorities' Aproaches," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 9-45, September.
    3. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    4. Francis X. Diebold & Neil A. Doherty & Richard J. Herring, 2010. "The Known, the Unknown, and the Unknowable in Financial Risk Management: Measurement and Theory Advancing Practice," Economics Books, Princeton University Press, edition 1, number 9223, October.
    5. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    6. repec:wsi:qjfxxx:v:02:y:2012:i:02:n:s2010139212500085 is not listed on IDEAS
    7. Paul Glasserman & Chulmin Kang & Wanmo Kang, 2015. "Stress scenario selection by empirical likelihood," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 25-41, January.
    8. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024,
    9. Hamilton, James D. & Wu, Jing Cynthia, 2012. "Identification and estimation of Gaussian affine term structure models," Journal of Econometrics, Elsevier, vol. 168(2), pages 315-331.
    10. Gregory R. Duffee, 2011. "Information in (and not in) the Term Structure," Review of Financial Studies, Society for Financial Studies, vol. 24(9), pages 2895-2934.
    11. Duffee, Gregory R., 2006. "Term structure estimation without using latent factors," Journal of Financial Economics, Elsevier, vol. 79(3), pages 507-536, March.
    12. Mark D. Flood & George G. Korenko, 2015. "Systematic scenario selection: stress testing and the nature of uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 43-59, January.
    13. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
    14. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ofr:wpaper:15-19. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gregory Feldberg). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.