News article analysis using Naive Bayes classifier
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022.
"Making text count: Economic forecasting using newspaper text,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
- Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2020. "Making text count: economic forecasting using newspaper text," Bank of England working papers 865, Bank of England.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martin Baumgaertner & Johannes Zahner, 2021.
"Whatever it takes to understand a central banker - Embedding their words using neural networks,"
MAGKS Papers on Economics
202130, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Baumgärtner, Martin & Zahner, Johannes, 2023. "Whatever it takes to understand a central banker: Embedding their words using neural networks," IMFS Working Paper Series 194, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- Zahner, Johannes & Baumgärtner, Martin, 2022. "Whatever it Takes to Understand a Central Banker – Embedding their Words Using Neural Networks," VfS Annual Conference 2022 (Basel): Big Data in Economics 264019, Verein für Socialpolitik / German Economic Association.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020.
"News Media vs. FRED-MD for Macroeconomic Forecasting,"
CESifo Working Paper Series
8639, CESifo.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Paper 2020/14, Norges Bank.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Papers No 08/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Fernandez, Raul & Palma Guizar, Brenda & Rho, Caterina, 2021.
"A sentiment-based risk indicator for the Mexican financial sector,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(3).
- Rho Caterina & Fernández Raúl & Palma Brenda, 2021. "A Sentiment-based Risk Indicator for the Mexican Financial Sector," Working Papers 2021-04, Banco de México.
- Nikoleta Anesti & Eleni Kalamara & George Kapetanios, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.
- Luca Barbaglia & Sergio Consoli & Sebastiano Manzan, 2024. "Forecasting GDP in Europe with textual data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 338-355, March.
- Youngjoon Lee & Soohyon Kim & Ki Young Park, 2018. "Deciphering Monetary Policy Committee Minutes with Text Mining Approach: A Case of South Korea," Working papers 2018rwp-132, Yonsei University, Yonsei Economics Research Institute.
- Johannes Zahner, 2020. "Above, but close to two percent. Evidence on the ECB’s inflation target using text mining," MAGKS Papers on Economics 202046, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Leonardo N. Ferreira, 2021. "Forecasting with VAR-teXt and DFM-teXt Models:exploring the predictive power of central bank communication," Working Papers Series 559, Central Bank of Brazil, Research Department.
- Massimo Ferrari Minesso & Laura Lebastard & Helena Mezo, 2023.
"Text-Based Recession Probabilities,"
IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(2), pages 415-438, June.
- Le Mezo, Helena & Ferrari Minesso, Massimo, 2021. "Text-based recession probabilities," Working Paper Series 2516, European Central Bank.
- Kohns, David & Bhattacharjee, Arnab, 2023.
"Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
- David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
- Bhattacharjee, Arnab & Kohns, David, 2022. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," National Institute of Economic and Social Research (NIESR) Discussion Papers 538, National Institute of Economic and Social Research.
- Aprigliano, Valentina & Emiliozzi, Simone & Guaitoli, Gabriele & Luciani, Andrea & Marcucci, Juri & Monteforte, Libero, 2023.
"The power of text-based indicators in forecasting Italian economic activity,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 791-808.
- Valentina Aprigliano & Simone Emiliozzi & Gabriele Guaitoli & Andrea Luciani & Juri Marcucci & Libero Monteforte, 2021. "The power of text-based indicators in forecasting the Italian economic activity," Temi di discussione (Economic working papers) 1321, Bank of Italy, Economic Research and International Relations Area.
- Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Vegard H. Larsen & Leif Anders Thorsrud, 2018.
"Business cycle narratives,"
Working Paper
2018/3, Norges Bank.
- Vegard H ghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Vegard H. Larsen & Leif Anders Thorsrud, 2019. "Business Cycle Narratives," CESifo Working Paper Series 7468, CESifo.
- Nicolò Fraccaroli & Alessandro Giovannini & Jean-François Jamet & Eric Persson, 2023.
"Central Banks in Parliaments: A Text Analysis of the Parliamentary Hearings of the Bank of England, the European Central Bank, and the Federal Reserve,"
International Journal of Central Banking, International Journal of Central Banking, vol. 19(2), pages 543-600, June.
- Fraccaroli, Nicolò & Giovannini, Alessandro & Jamet, Jean-Francois, 2020. "Central banks in parliaments: a text analysis of the parliamentary hearings of the Bank of England, the European Central Bank and the Federal Reserve," Working Paper Series 2442, European Central Bank.
- Sebastian Doerr & Leonardo Gambacorta & José María Serena Garralda, 2021. "Big data and machine learning in central banking," BIS Working Papers 930, Bank for International Settlements.
- Moreno-Pérez, Carlos & Minozzo, Marco, 2024.
"‘Making text talk’: The minutes of the Central Bank of Brazil and the real economy,"
Journal of International Money and Finance, Elsevier, vol. 147(C).
- Carlos Moreno Pérez & Marco Minozzo, 2022. "“Making Text Talk”: The Minutes of the Central Bank of Brazil and the Real Economy," Working Papers 2240, Banco de España.
- Algaba, Andres & Borms, Samuel & Boudt, Kris & Verbeken, Brecht, 2023.
"Daily news sentiment and monthly surveys: A mixed-frequency dynamic factor model for nowcasting consumer confidence,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 266-278.
- Andres Algaba & Samuel Borms & Kris Boudt & Brecht Verbeken, 2021. "Daily news sentiment and monthly surveys: A mixed–frequency dynamic factor model for nowcasting consumer confidence," Working Paper Research 396, National Bank of Belgium.
- Bondarenko, Yevheniia & Lewis, Vivien & Rottner, Matthias & Schüler, Yves, 2024.
"Geopolitical risk perceptions,"
Journal of International Economics, Elsevier, vol. 152(C).
- Bondarenko, Yevheniia & Lewis, Vivien & Rottner, Matthias & Schüler, Yves, 2023. "Geopolitical Risk Perceptions," CEPR Discussion Papers 18123, C.E.P.R. Discussion Papers.
- Bondarenko, Yevheniia & Lewis, Vivien & Rottner, Matthias & Schüler, Yves, 2024. "Geopolitical risk perceptions," Discussion Papers 37/2024, Deutsche Bundesbank.
- Alastair Firrell & Kate Reinold, 2020. "Uncertainty and voting on the Bank of England’s Monetary Policy Committee," Bank of England working papers 898, Bank of England.
- Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
More about this item
Keywords
; ; ;JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-04-21 (Big Data)
- NEP-CMP-2025-04-21 (Computational Economics)
- NEP-TRA-2025-04-21 (Transition Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nsb:bilten:27. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marko Miseljic (email available below). General contact details of provider: https://edirc.repec.org/data/nbjgvyu.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.