IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/0069.html
   My bibliography  Save this paper

Ridge Estimators for Distributed Lag Models

Author

Listed:
  • G.S. Maddala

Abstract

The paper explains how the Almon polynominal lag specification can be made stochastic in two different ways - one suggested by Shiller and another following the lines of Lindley and Smith. It is shown that both the estimators can be considered as modified ridge estimators. The paper then compares these modified ridge estimators with the ridge estimator suggested by Hoerl and Kennard. It is shown that for the estimation of distributed lag models the ridge estimator suggested by Hoerl and Kennard is not useful but that the modified ridge estimators corresponding to the stochastic versions of the Almon lag are promising. The paper has two empirical illustrations.

Suggested Citation

  • G.S. Maddala, 1974. "Ridge Estimators for Distributed Lag Models," NBER Working Papers 0069, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:0069
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w0069.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Zellner, Arnold & Geisel, Martin S, 1970. "Analysis of Distributed Lag Models with Application to Consumption Function Estimation," Econometrica, Econometric Society, vol. 38(6), pages 865-888, November.
    2. Paul W. Holland, 1973. "Weighted Ridge Regression: Combining Ridge and Robust Regression Methods," NBER Working Papers 0011, National Bureau of Economic Research, Inc.
    3. Leamer, Edward E, 1972. "A Class of Informative Priors and Distributed Lag Analysis," Econometrica, Econometric Society, vol. 40(6), pages 1059-1081, November.
    4. Shiller, Robert J, 1973. "A Distributed Lag Estimator Derived from Smoothness Priors," Econometrica, Econometric Society, vol. 41(4), pages 775-788, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John F. Wilson, 1976. "Have geometric lag hypotheses outlived their time? some evidence in a Monte Carlo framework," International Finance Discussion Papers 82, Board of Governors of the Federal Reserve System (U.S.).
    2. Robert J. Shiller, 1975. "Alternative Prior Representations of Smoothness for Distributed Lag Estimation," NBER Working Papers 0089, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:0069. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: () or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.