IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2014-25.html
   My bibliography  Save this paper

Nonparametric Regression Approach to Bayesian Estimation

Author

Listed:
  • Jiti Gao
  • Han Hong

Abstract

Estimation of unknown parameters and functions involved in complex nonlinear econometric models is a very important issue. Existing estimation methods include generalised method of moments (GMM) by Hansen (1982) and others, efficient method of moments (EMM) by Gallant and Tauchen (1997), Markov chain Monte Carlo (MCMC) method by Chernozhukov and Hong (2003), and nonparametric simulated maximum likelihood estimation (NSMLE) method by Creel and Kristensen (2011), and Kristensen and Shin (2012). Except the NSMLE method, other existing methods do not provide closed-form solutions. This paper proposes non- and semi-parametric based closed-form approximations to the estimation and computation of posterior means involved in complex nonlinear econometric models. We first consider the case where the samples can be independently drawn from both the likelihood function and the prior density. The samples and observations are then used to nonparametrically estimate posterior mean functions. The estimation method is also applied to estimate the posterior mean of the parameter-of-interest on a summary statistic. Both the asymptotic theory and the finite sample study show that the nonparametric estimate of this posterior mean is superior to existing estimates, including the conventional sample mean.

Suggested Citation

  • Jiti Gao & Han Hong, 2014. "Nonparametric Regression Approach to Bayesian Estimation," Monash Econometrics and Business Statistics Working Papers 25/14, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2014-25
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp25-14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1433-1445, October.
    3. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    4. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    5. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    6. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    7. Paul Fearnhead & Dennis Prangle, 2012. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 419-474, June.
    8. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    9. Gao, Jiti & Phillips, Peter C.B., 2013. "Semiparametric estimation in triangular system equations with nonstationarity," Journal of Econometrics, Elsevier, vol. 176(1), pages 59-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Creel & Dennis Kristensen, 2013. "Indirect Likelihood Inference (revised)," UFAE and IAE Working Papers 931.13, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    2. Michael Creel & Dennis Kristensen, "undated". "Indirect Likelihood Inference," Working Papers 558, Barcelona School of Economics.
    3. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    4. Bruins, Marianne & Duffy, James A. & Keane, Michael P. & Smith, Anthony A., 2018. "Generalized indirect inference for discrete choice models," Journal of Econometrics, Elsevier, vol. 205(1), pages 177-203.
    5. Li, Degui & Phillips, Peter C. B. & Gao, Jiti, 2016. "Uniform Consistency Of Nonstationary Kernel-Weighted Sample Covariances For Nonparametric Regression," Econometric Theory, Cambridge University Press, vol. 32(3), pages 655-685, June.
    6. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    7. Creel, Michael & Kristensen, Dennis, 2016. "On selection of statistics for approximate Bayesian computing (or the method of simulated moments)," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 99-114.
    8. Boucher, Vincent, 2020. "Equilibrium homophily in networks," European Economic Review, Elsevier, vol. 123(C).
    9. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    10. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    11. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    12. Vincent Boucher, 2017. "The Estimation of Network Formation Games with Positive Spillovers," Cahiers de recherche 1710, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    13. Creel, Michael & Kristensen, Dennis, 2015. "ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 85-108.
    14. Almunia, Miguel & Guceri, Irem & Lockwood, Ben & Scharf, Kimberley, 2020. "More giving or more givers? The effects of tax incentives on charitable donations in the UK," Journal of Public Economics, Elsevier, vol. 183(C).
    15. Maican, Florin G., 2012. "From Boom to Bust and Back Again: A dynamic analysis of IT services," Working Papers in Economics 543, University of Gothenburg, Department of Economics.
    16. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
    17. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.
    18. Giacomini, Raffaella & Ragusa, Giuseppe & Gallant, A. Ronald, 2013. "Generalized Method of Moments with Latent Variables," CEPR Discussion Papers 9692, C.E.P.R. Discussion Papers.
    19. Li, Degui & Lu, Zudi & Linton, Oliver, 2012. "Local Linear Fitting Under Near Epoch Dependence: Uniform Consistency With Convergence Rates," Econometric Theory, Cambridge University Press, vol. 28(5), pages 935-958, October.
    20. Hlouskova, Jaroslava & Sögner, Leopold, 2020. "GMM estimation of affine term structure models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 2-15.

    More about this item

    Keywords

    then proposes some non- and semi-parametric dimension reductions methods to deal with the case where the dimensionality of either the regressors or the summary statistics is large. Meanwhile; the paper develops a nonparametric estimation method for the case where the samples are obtained from using a resampling algorithm. The asymptotic theory shows that in each case the rate of convergence of the nonparametric estimate based on the resamples is faster than that of the conventional nonparametric estimation method by an order of the number of the resamples. The proposed models and estimation methods are evaluated through using simulated and empirical examples. Both the simulated and empirical examples show that the proposed nonparametric estimation based on resamples outperforms existing estimation methods.;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2014-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.