IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2004-12.html
   My bibliography  Save this paper

Some Results on the Identification and Estimation of Vector ARMAX Processes

Author

Listed:
  • D.S. Poskitt

Abstract

This paper addresses the problem of identifying echelon canonical forms for a vector autoregressive moving average model with exogenous variables using finite algorithms. For given values of the Kronecker indices a method for estimating the structural parameters of a model using ordinary least squares calculations is presented. These procedures give rise, rather naturally, to a technique for the determination of the structural indices based on the use of conventional model selection criteria. A detailed analysis of the statistical properties of the estimation and identification procedures is given and some evidence on the practical significance of the results obtained is also provided. Modifications designed to improve the performance of the methods are presented. Some discussion of the practical significance of the results obtained is also provided.

Suggested Citation

  • D.S. Poskitt, 2004. "Some Results on the Identification and Estimation of Vector ARMAX Processes," Monash Econometrics and Business Statistics Working Papers 12/04, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2004-12
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2004/wp12-04.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Poskitt, D. S. & Salau, M. O., 1994. "On the Asymptotic Relative Efficiency of Gaussian and Least Squares Estimators for Vector ARMA Models," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 294-317, November.
    2. D. S. Poskitt & A. R. Tremayne, 1986. "Some Aspects Of The Performance Of Diagnostic Checks In Bivariate Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 217-233, May.
    3. Lutkepohl, Helmut & Poskitt, D S, 1996. "Specification of Echelon-Form VARMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 69-79, January.
    4. Lai, T. L. & Wei, C. Z., 1982. "Asymptotic properties of projections with applications to stochastic regression problems," Journal of Multivariate Analysis, Elsevier, vol. 12(3), pages 346-370, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. S. Poskitt, 2005. "A Note on the Specification and Estimation of ARMAX Systems," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 157-183, March.
    2. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.
    3. D. S. Poskitt & M. O. Salau, 1995. "On The Relationship Between Generalized Least Squares And Gaussian Estimation Of Vector Arma Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(6), pages 617-645, November.
    4. Norbert Christopeit & Michael Massmann, 2013. "A Note on an Estimation Problem in Models with Adaptive Learning," Tinbergen Institute Discussion Papers 13-151/III, Tinbergen Institute.
    5. René Lalonde & Jennifer Page & Pierre St-Amant, 1998. "Une nouvelle méthode d'estimation de l'écart de production et son application aux États-Unis, au Canada et à l'Allemagne," Staff Working Papers 98-21, Bank of Canada.
    6. DUFOUR, Jean-Marie & JOUINI, Tarek, 2005. "Asymptotic Distribution of a Simple Linear Estimator for VARMA Models in Echelon Form," Cahiers de recherche 10-2005, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Poskitt, D.S., 2016. "Vector autoregressive moving average identification for macroeconomic modeling: A new methodology," Journal of Econometrics, Elsevier, vol. 192(2), pages 468-484.
    8. Dias, Gustavo Fruet & Kapetanios, George, 2018. "Estimation and forecasting in vector autoregressive moving average models for rich datasets," Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
    9. Peter C.B. Phillips, 2008. "Unit Root Model Selection," Cowles Foundation Discussion Papers 1653, Cowles Foundation for Research in Economics, Yale University.
    10. Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016. "Large Bayesian VARMAs," Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
    11. Dupasquier, Chantal & Guay, Alain & St-Amant, Pierre, 1999. "A Survey of Alternative Methodologies for Estimating Potential Output and the Output Gap," Journal of Macroeconomics, Elsevier, vol. 21(3), pages 577-595, July.
    12. Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016. "Time series analysis of persistence in crude oil price volatility across bull and bear regimes," Energy, Elsevier, vol. 109(C), pages 29-37.
    13. Christian Kascha & Carsten Trenkler, 2011. "Cointegrated VARMA models and forecasting US interest rates," ECON - Working Papers 033, Department of Economics - University of Zurich.
    14. Cho, Haeran & Fryzlewicz, Piotr, 2023. "Multiple change point detection under serial dependence: wild contrast maximisation and gappy Schwarz algorithm," LSE Research Online Documents on Economics 120085, London School of Economics and Political Science, LSE Library.
    15. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    16. George Athanasopoulos & D. Poskitt & Farshid Vahid, 2012. "Two Canonical VARMA Forms: Scalar Component Models Vis-à-Vis the Echelon Form," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 60-83.
    17. Holger Bartel & Helmut Lutkepohl, 1998. "Estimating the Kronecker indices of cointegrated echelon-form VARMA models," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 76-99.
    18. Jean-Marie Dufour & Tarek Jouini, 2011. "Asymptotic Distributions for Some Quasi-Efficient Estimators in Echelon VARMA Models," CIRANO Working Papers 2011s-25, CIRANO.
    19. Celina Pestano & Concepción González, 1998. "A new approach in multivariate time series specification," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 4(3), pages 229-242, August.
    20. Bhansali, Rajendra J., 2020. "Model specification and selection for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 175(C).

    More about this item

    Keywords

    ARMAX model; consistency; echelon canonical form; efficiency; estimation; identification; Kronecker invariants; least squares; selection criterion; structure determination; subspace algorithm.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2004-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.