IDEAS home Printed from https://ideas.repec.org/p/mnh/spaper/2110.html
   My bibliography  Save this paper

Accuracy, certainty and surprise : a prediction market on the outcome of the 2002 FIFA World Cup

Author

Listed:
  • Schmidt, Carsten
  • Strobel, Martin
  • Volkland, Henning Oskar

Abstract

In this chapter, we present our empirical investigation of the forecasting accuracy of a prediction market experiment drawn on the outcome of the World Cup 2002. We analyse the predictive accuracy of 64 markets and compare to bookmakers’ quotes and chance as benchmarks. We revisit the evaluation of Schmidt and Werwatz (Chapter 16) and compare our results directly to their findings. In addition, we propose a new method for testing predictive accuracy by means of a non-parametric test for the similarity of probability distributions and we evaluate the incorporation of information in market prices by comparing pre-match and half-time price data. We find a reversed favourite-longshot bias when analysing market prices before the start of the match and this bias does not disappear with the inflow of new information until half-time. Unlike the market based predictions bookmakers appear to be perfectly calibrated. Since there were substantial deviations in outcome between the 2000 European Championship and our data, we offer possible explanations for the much worse performance of the 2002 World Cup prediction market. Consistent with Schmidt and Werwatz (Chapter 16) prediction markets do assign relatively higher probabilities to the favourite when compared to the odds-setters. Together with a long streak of surprising outcomes this fact appears most likely to be responsible for the predictive inaccuracy.

Suggested Citation

  • Schmidt, Carsten & Strobel, Martin & Volkland, Henning Oskar, 2008. "Accuracy, certainty and surprise : a prediction market on the outcome of the 2002 FIFA World Cup," Papers 08-13, Sonderforschungsbreich 504.
  • Handle: RePEc:mnh:spaper:2110
    as

    Download full text from publisher

    File URL: https://madoc.bib.uni-mannheim.de/2110/1/dp08_13.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robin Hanson, 1998. "Consensus By Identifying Extremists," Theory and Decision, Springer, vol. 44(3), pages 293-301, June.
    2. Leighton Vaughan Williams & David Paton, 1998. "Why are some favourite-longshot biases positive and others negative?," Applied Economics, Taylor & Francis Journals, vol. 30(11), pages 1505-1510.
    3. Woodland, Linda M & Woodland, Bill M, 1994. "Market Efficiency and the Favorite-Longshot Bias: The Baseball Betting Market," Journal of Finance, American Finance Association, vol. 49(1), pages 269-279, March.
    4. Linda M. Woodland & Bill M. Woodland, 2003. "The Reverse Favourite–longshot Bias and Market Efficiency in Major League Baseball: An Update," Bulletin of Economic Research, Wiley Blackwell, vol. 55(2), pages 113-123, April.
    5. Forrest, David & Goddard, John & Simmons, Robert, 2005. "Odds-setters as forecasters: The case of English football," International Journal of Forecasting, Elsevier, vol. 21(3), pages 551-564.
    6. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    7. Steven D. Levitt, 2004. "Why are gambling markets organised so differently from financial markets?," Economic Journal, Royal Economic Society, vol. 114(495), pages 223-246, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wheatcroft Edward, 2021. "Evaluating probabilistic forecasts of football matches: the case against the ranked probability score," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 273-287, December.
    2. Wheatcroft, Edward, 2021. "Evaluating probabilistic forecasts of football matches: the case against the ranked probability score," LSE Research Online Documents on Economics 111494, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Forrest & Ian Mchale, 2007. "Anyone for Tennis (Betting)?," The European Journal of Finance, Taylor & Francis Journals, vol. 13(8), pages 751-768.
    2. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    3. Philip W. S. Newall & Dominic Cortis, 2021. "Are Sports Bettors Biased toward Longshots, Favorites, or Both? A Literature Review," Risks, MDPI, vol. 9(1), pages 1-9, January.
    4. Jinook Jeong & Jee Young Kim & Yoon Jae Ro, 2019. "On the efficiency of racetrack betting market: a new test for the favourite-longshot bias," Applied Economics, Taylor & Francis Journals, vol. 51(54), pages 5817-5828, November.
    5. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    6. Gross, Johannes & Rebeggiani, Luca, 2018. "Chance or Ability? The Efficiency of the Football Betting Market Revisited," MPRA Paper 87230, University Library of Munich, Germany.
    7. Oliver Merz & Raphael Flepp & Egon Franck, 2019. "Does sentiment harm market efficiency? An empirical analysis using a betting exchange setting," Working Papers 381, University of Zurich, Department of Business Administration (IBW).
    8. Benjamin Waggoner & Daniel Wines & Brian P. Soebbing & Chad S. Seifried & Jean Michael Martinez, 2014. "“Hot Hand” in the National Basketball Association Point Spread Betting Market: A 34-Year Analysis," IJFS, MDPI, vol. 2(4), pages 1-12, November.
    9. Yu, Dian & Gao, Jianjun & Wang, Tongyao, 2022. "Betting market equilibrium with heterogeneous beliefs: A prospect theory-based model," European Journal of Operational Research, Elsevier, vol. 298(1), pages 137-151.
    10. Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico & Johnson, Johnnie E.V., 2018. "It takes all sorts: A heterogeneous agent explanation for prediction market mispricing," European Journal of Operational Research, Elsevier, vol. 270(2), pages 556-569.
    11. Johannes Berger & Petra Nieken, 2016. "Heterogeneous Contestants and the Intensity of Tournaments," Journal of Sports Economics, , vol. 17(7), pages 631-660, October.
    12. Christian Deutscher & Bernd Frick & Marius Ötting, 2018. "Betting market inefficiencies are short-lived in German professional football," Applied Economics, Taylor & Francis Journals, vol. 50(30), pages 3240-3246, June.
    13. S Lessmann & M-C Sung & J E V Johnson, 2011. "Towards a methodology for measuring the true degree of efficiency in a speculative market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2120-2132, December.
    14. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    15. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
    16. Jaiho Chung & Joon Ho Hwang, 2010. "An Empirical Examination of the Parimutuel Sports Lottery Market versus the Bookmaker Market," Southern Economic Journal, John Wiley & Sons, vol. 76(4), pages 884-905, April.
    17. Adi Schnytzer & Guy Weinberg, 2008. "Testing for Home Team and Favorite Biases in the Australian Rules Football Fixed-Odds and Point Spread Betting Markets," Journal of Sports Economics, , vol. 9(2), pages 173-190, April.
    18. David Forrest & Robert Simmons, 2008. "Sentiment in the betting market on Spanish football," Applied Economics, Taylor & Francis Journals, vol. 40(1), pages 119-126.
    19. Linda M. Woodland & Bill M. Woodland, 2011. "The Reverse Favorite-Longshot Bias in the National Hockey League: Do Bettors Still Score on Longshots?," Journal of Sports Economics, , vol. 12(1), pages 106-117, February.
    20. Linda M. Woodland & Bill M. Woodland, 2015. "The National Football League season wins total betting market: The impact of heuristics on behavior," Southern Economic Journal, John Wiley & Sons, vol. 82(1), pages 38-54, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mnh:spaper:2110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Katharina Rautenberg (email available below). General contact details of provider: https://edirc.repec.org/data/sfmande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.