IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

On the Principle of Optimality for Nonstationary Deterministic Dynamic Programming

  • Takashi Kamihigashi

    (Research Institute for Economics & Business Administration (RIEB), Kobe University, Japan)

This note studies a general nonstationary infinite-horizon optimization problem in discrete time. We allow the state space in each period to be an arbitrary set, and the return function in each period to be unbounded. We do not require discounting, and do not require the constraint correspondence in each period to be nonempty-valued. The objective function is defined as the limit superior or inferior of the finite sums of return functions. We show that the sequence of time-indexed value functions satisfies the Bellman equation if and only if its right-hand side is well defined, i.e., it does not involve -∞+∞.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.rieb.kobe-u.ac.jp/academic/ra/dp/English/dp200.pdf
File Function: First version, 2007
Download Restriction: no

Paper provided by Research Institute for Economics & Business Administration, Kobe University in its series Discussion Paper Series with number 200.

as
in new window

Length: 9 pages
Date of creation: Jan 2007
Date of revision:
Handle: RePEc:kob:dpaper:200
Contact details of provider: Postal: 2-1 Rokkodai, Nada, Kobe 657-8501 JAPAN
Phone: +81-(0)78 803 7036
Fax: +81-(0)78 803 7059
Web page: http://www.rieb.kobe-u.ac.jp/index-e.html

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Alvarez, Fernando & Stokey, Nancy L., 1998. "Dynamic Programming with Homogeneous Functions," Journal of Economic Theory, Elsevier, vol. 82(1), pages 167-189, September.
  2. LE VAN, Cuong & MORHAIM, Lisa, 2001. "Optimal growth models with bounded or unbounded returns: a unifying approach," CORE Discussion Papers 2001034, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Juan Pablo RincÛn-Zapatero & Carlos RodrÌguez-Palmero, 2003. "Existence and Uniqueness of Solutions to the Bellman Equation in the Unbounded Case," Econometrica, Econometric Society, vol. 71(5), pages 1519-1555, 09.
  4. McKenzie, Lionel W., 2005. "Optimal economic growth, turnpike theorems and comparative dynamics," Handbook of Mathematical Economics, in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 2, volume 3, chapter 26, pages 1281-1355 Elsevier.
  5. Dana, Rose-Anne & Le Van, Cuong, 2006. "Optimal growth without discounting," Economics Papers from University Paris Dauphine 123456789/433, Paris Dauphine University.
  6. Brock, William A, 1970. "On Existence of Weakly Maximal Programmes in a Multi-Sector Economy," Review of Economic Studies, Wiley Blackwell, vol. 37(2), pages 275-80, April.
  7. Michel, Philippe, 1990. "Some Clarifications on the Transversality Condition," Econometrica, Econometric Society, vol. 58(3), pages 705-23, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:kob:dpaper:200. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Office of Promoting Research Collaboration, Research Institute for Economics & Business Administration, Kobe University)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.