IDEAS home Printed from https://ideas.repec.org/p/isu/genres/13155.html

Testing Institutional Arrangements Via Agent-Based Modeling: A U.S. Electricity Market Example

Author

Listed:
  • Li, Hongyan
  • Sun, Junjie
  • Tesfatsion, Leigh

Abstract

Many critical goods and services in modern-day economies are produced and distributed through complex institutional arrangements. Agent-based computational economics (ACE) modeling tools are capable of handling this degree of complexity. In concrete support of this claim, this study presents an ACE test bed designed to permit the exploratory study of restructured U.S. wholesale power markets with transmission grid congestion managed by locational marginal prices (LMPs). Illustrative findings are presented showing how spatial LMP cross-correlation patterns vary systematically in response to changes in the price responsiveness of wholesale power demand when wholesale power sellers have learning capabilities. These findings highlight several distinctive features of ACE modeling: namely, an emphasis on process rather than on equilibrium; an ability to capture complicated structural, institutional, and behavioral real-world aspects (micro-validation); and an ability to study the effects of changes in these aspects on spatial and temporal outcome distributions.

Suggested Citation

  • Li, Hongyan & Sun, Junjie & Tesfatsion, Leigh, 2010. "Testing Institutional Arrangements Via Agent-Based Modeling: A U.S. Electricity Market Example," Staff General Research Papers Archive 13155, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genres:13155
    as

    Download full text from publisher

    File URL: http://www2.econ.iastate.edu/papers/p7965-2010-01-11.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    2. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.
    3. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880, Elsevier.
    4. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bozhechkova Alexandra & Trunin Pavel & Sinelnikova-Muryleva Elena & Petrova Diana & Chentsov Alexander, 2018. "Building of monetary and currency markets models," Research Paper Series, Gaidar Institute for Economic Policy, issue 175P, pages 1-96.
    2. Juan Manuel Larrosa, 2016. "Agentes computacionales y análisis económico," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 18(34), pages 87-113, January-J.
    3. Paul L. Borrill & Leigh Tesfatsion, 2011. "Agent-based Modeling: The Right Mathematics for the Social Sciences?," Chapters, in: John B. Davis & D. Wade Hands (ed.), The Elgar Companion to Recent Economic Methodology, chapter 11, Edward Elgar Publishing.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    2. G. Fagiolo & C. Birchenhall & P. Windrum, 2007. "Empirical Validation in Agent-based Models: Introduction to the Special Issue," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 189-194, October.
    3. Rodolphe Buda, 2007. "Propositions for the Building of a Quantitative Austrian Modelling: An Answer to Prof. Rizzo and to Prof. Vriend," Working Papers hal-04139234, HAL.
    4. Tesfatsion, Leigh, 2006. "Agent-Based Computational Modeling and Macroeconomics," ISU General Staff Papers 200601010800001585, Iowa State University, Department of Economics.
    5. Westerhoff Frank H., 2008. "The Use of Agent-Based Financial Market Models to Test the Effectiveness of Regulatory Policies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 195-227, April.
    6. Klaus Jaffe, 2015. "Agent based simulations visualize Adam Smith's invisible hand by solving Friedrich Hayek's Economic Calculus," Papers 1509.04264, arXiv.org, revised Nov 2015.
    7. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Giovanni Dosi & Marcelo C. Pereira & Andrea Roventini & Maria Enrica Virgillito, 2018. "The labour-augmented K+S model: a laboratory for the analysis of institutional and policy regimes," LEM Papers Series 2018/24, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Matus Halas, 2018. "Balancing Against Threats In Interactions Determined By Distance And Overall Gains," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-22, August.
    10. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    11. Chen, Yong & Irwin, Elena G. & Jayaprakash, Ciriyam, 2011. "Incorporating Spatial Complexity into Economic Models of Land Markets and Land Use Change," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 40(3), pages 1-20, December.
    12. Glötzl, Erhard, 2022. "Macroeconomic General Constrained Dynamic models (GCD models)," MPRA Paper 112385, University Library of Munich, Germany.
    13. Juan Manuel Larrosa, 2016. "Agentes computacionales y análisis económico," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 18(34), pages 87-113, January-J.
    14. Georg Jäger & Laura S. Zilian & Christian Hofer & Manfred Füllsack, 2019. "Crowdworking: working with or against the crowd?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(4), pages 761-788, December.
    15. Ashraf, Quamrul & Gershman, Boris & Howitt, Peter, 2017. "Banks, market organization, and macroeconomic performance: An agent-based computational analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 135(C), pages 143-180.
    16. Filatova, Tatiana & Parker, Dawn C. & van der Veen, Anne, 2011. "The Implications of Skewed Risk Perception for a Dutch Coastal Land Market: Insights from an Agent-Based Computational Economics Model," Agricultural and Resource Economics Review, Cambridge University Press, vol. 40(3), pages 405-423, December.
    17. Richard Holt & J. Barkley Rosser & David Colander, 2011. "The Complexity Era in Economics," Review of Political Economy, Taylor & Francis Journals, vol. 23(3), pages 357-369.
    18. Seppecher, Pascal, 2012. "Flexibility Of Wages And Macroeconomic Instability In An Agent-Based Computational Model With Endogenous Money," Macroeconomic Dynamics, Cambridge University Press, vol. 16(S2), pages 284-297, September.
    19. Li, Xi Hao & Gallegati, Mauro, 2015. "Sectoral Imbalance in Two-Sector Economy with Mobility Constraint and Firm Migration," MPRA Paper 66002, University Library of Munich, Germany.
    20. Sandye Gloria, 2019. "From Methodological Individualism to Complexity: The Case of Ludwig Lachmann," Post-Print halshs-02345495, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • D6 - Microeconomics - - Welfare Economics
    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance
    • L3 - Industrial Organization - - Nonprofit Organizations and Public Enterprise
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genres:13155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.