IDEAS home Printed from
   My bibliography  Save this paper

Nonparametric estimation and inference under shape restrictions


  • Joel L. Horowitz

    () (Institute for Fiscal Studies and Northwestern University)

  • Sokbae (Simon) Lee

    () (Institute for Fiscal Studies and Columbia University and IFS)


Economic theory often provides shape restrictions on functions of interest in applications, such as monotonicity, convexity, non-increasing (non-decreasing) returns to scale, or the Slutsky inequality of consumer theory; but economic theory does not provide finite-dimensional parametric models. This motivates nonparametric estimation under shape restrictions. Nonparametric estimates are often very noisy. Shape restrictions stabilize nonparametric estimates without imposing arbitrary restrictions, such as additivity or a single-index structure, that may be inconsistent with economic theory and the data. This paper explains how to estimate and obtain an asymptotic uniform confidence band for a conditional mean function under possibly nonlinear shape restrictions, such as the Slutsky inequality. The results of Monte Carlo experiments illustrate the finite-sample performance of the method, and an empirical example illustrates its use in an application.

Suggested Citation

  • Joel L. Horowitz & Sokbae (Simon) Lee, 2015. "Nonparametric estimation and inference under shape restrictions," CeMMAP working papers CWP67/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:67/15

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Jacho-Chávez, David & Lewbel, Arthur & Linton, Oliver, 2010. "Identification and nonparametric estimation of a transformed additively separable model," Journal of Econometrics, Elsevier, vol. 156(2), pages 392-407, June.
    2. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    3. E. Mammen & C. Thomas‐Agnan, 1999. "Smoothing Splines and Shape Restrictions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(2), pages 239-252, June.
    4. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    5. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    6. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    7. Richard Blundell & Joel Horowitz & Matthias Parey, 2017. "Nonparametric Estimation of a Nonseparable Demand Function under the Slutsky Inequality Restriction," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 291-304, May.
    8. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2013. "Testing functional inequalities," Journal of Econometrics, Elsevier, vol. 172(1), pages 14-32.
    9. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2014. "A Practical Two‐Step Method for Testing Moment Inequalities," Econometrica, Econometric Society, vol. 82, pages 1979-2002, September.
    10. Hall, Peter & Yatchew, Adonis, 2005. "Unified approach to testing functional hypotheses in semiparametric contexts," Journal of Econometrics, Elsevier, vol. 127(2), pages 225-252, August.
    11. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2012. "Measuring the price responsiveness of gasoline demand: Economic shape restrictions and nonparametric demand estimation," Quantitative Economics, Econometric Society, vol. 3(1), pages 29-51, March.
    12. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    13. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    14. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
    15. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    17. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Yu Zhu, 2020. "Inference in nonparametric/semiparametric moment equality models with shape restrictions," Quantitative Economics, Econometric Society, vol. 11(2), pages 609-636, May.
    2. repec:gnv:wpaper:unige:79975 is not listed on IDEAS
    3. Adams, Abigail, 2019. "Mutually Consistent Revealed Preference Demand Predictions," CEPR Discussion Papers 13580, C.E.P.R. Discussion Papers.
    4. Olivier Scaillet, 2016. "On ill‐posedness of nonparametric instrumental variable regression with convexity constraints," Econometrics Journal, Royal Economic Society, vol. 19(2), pages 232-236, June.
    5. Botosaru, Irene, 2020. "Nonparametric analysis of a duration model with stochastic unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 217(1), pages 112-139.
    6. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689,, revised Aug 2020.
    7. Lee, Y-Y. & Bhattacharya, D., 2018. "Applied Welfare Analysis for Discrete Choice with Interval-data on Income," Cambridge Working Papers in Economics 1882, Faculty of Economics, University of Cambridge.
    8. Freyberger, Joachim & Rai, Yoshiyasu, 2018. "Uniform confidence bands: Characterization and optimality," Journal of Econometrics, Elsevier, vol. 204(1), pages 119-130.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:67/15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.