IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2014-001.html
   My bibliography  Save this paper

Principal Component Analysis in an Asymmetric Norm

Author

Listed:
  • Ngoc Mai Tran
  • Maria Osipenko
  • Wolfgang Karl Härdle

Abstract

Principal component analysis (PCA) is a widely used dimension reduction tool in the analysis of many kind of high-dimensional data. It is used in signal process- ing, mechanical ingeneering, psychometrics, and other fields under different names. It still bears the same mathematical idea: the decomposition of variation of a high dimensional object into uncorrelated factors or components. However, in many of the above applications, one is interested in capturing the tail variables of the data rather than variation around the mean. Such applications include weather related event curves, expected shortfalls, and speeding analysis among others. These are all high dimensional tail objects which one would like to study in a PCA fashion. The tail character though requires to do the dimension reduction in an asymmet- ric norm rather than the classical L2-type orthogonal projection. We develop an analogue of PCA in an asymmetric norm. These norms cover both quantiles and expectiles, another tail event measure. The difficulty is that there is no natural basis, no 'principal components', to the k-dimensional subspace found. We propose two definitions of principal components and provide algorithms based on iterative least squares. We prove upper bounds on their convergence times, and compare their performances in a simulation study. We apply the algorithms to a Chinese weather dataset with a view to weather derivative pricing.

Suggested Citation

  • Ngoc Mai Tran & Maria Osipenko & Wolfgang Karl Härdle, 2014. "Principal Component Analysis in an Asymmetric Norm," SFB 649 Discussion Papers SFB649DP2014-001, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2014-001
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2014-001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
    2. Kehui Chen & Hans‐Georg Müller, 2012. "Conditional quantile analysis when covariates are functions, with application to growth data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 67-89, January.
    3. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    4. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    5. Kneip A. & Utikal K. J, 2001. "Inference for Density Families Using Functional Principal Component Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 519-542, June.
    6. Šaltytė Benth, Jūratė & Benth, Fred Espen, 2012. "A critical view on temperature modelling for application in weather derivatives markets," Energy Economics, Elsevier, vol. 34(2), pages 592-602.
    7. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    8. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brenda López Cabrera & Franziska Schulz, 2017. "Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 127-136, January.
    2. Cathy Yi-Hsuan Chen & Wolfgang Karl Härdle & Yarema Okhrin, 2017. "Tail event driven networks of SIFIs," SFB 649 Discussion Papers SFB649DP2017-004, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Petra Burdejová & Wolfgang K. Härdle, 2019. "Dynamic semi-parametric factor model for functional expectiles," Computational Statistics, Springer, vol. 34(2), pages 489-502, June.
    4. Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl & Okhrin, Yarema, 2019. "Tail event driven networks of SIFIs," Journal of Econometrics, Elsevier, vol. 208(1), pages 282-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2023. "Testing Granger Non-Causality in Expectiles," University of East Anglia School of Economics Working Paper Series 2023-02, School of Economics, University of East Anglia, Norwich, UK..
    2. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    3. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    4. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    5. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    6. Ren, Rui & Lu, Meng-Jou & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "Financial Risk Meter FRM based on Expectiles," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    8. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    9. Xiu Xu & Andrija Mihoci & Wolfgang Karl Hardle, 2020. "lCARE -- localizing Conditional AutoRegressive Expectiles," Papers 2009.13215, arXiv.org.
    10. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    11. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2023. "Extreme expectile estimation for short-tailed data, with an application to market risk assessment," TSE Working Papers 23-1414, Toulouse School of Economics (TSE).
    12. Xu, Xiu & Mihoci, Andrija & Härdle, Wolfgang Karl, 2018. "lCARE - localizing conditional autoregressive expectiles," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 198-220.
    13. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2021. "Systemic-systematic risk in financial system: A dynamic ranking based on expectiles," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 330-365.
    14. Larsson, Karl & Green, Rikard & Benth, Fred Espen, 2023. "A stochastic time-series model for solar irradiation," Energy Economics, Elsevier, vol. 117(C).
    15. Mengmeng Guo & Lhan Zhou & Jianhua Z. Huang & Wolfgang Karl Härdle, 2013. "Functional Data Analysis of Generalized Quantile Regressions," SFB 649 Discussion Papers SFB649DP2013-001, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    16. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    17. Yundong Tu & Siwei Wang, 2023. "Variable Screening and Model Averaging for Expectile Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 574-598, June.
    18. Tu, Yundong & Wang, Siwei, 2020. "Jackknife model averaging for expectile regressions in increasing dimension," Economics Letters, Elsevier, vol. 197(C).
    19. Yao, Yinhong & Li, Jianping & Sun, Xiaolei, 2021. "Measuring the risk of Chinese Fintech industry: evidence from the stock index," Finance Research Letters, Elsevier, vol. 39(C).
    20. Yingying Jiang & Fuming Lin & Yong Zhou, 2021. "The kth power expectile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 83-113, February.

    More about this item

    Keywords

    principal components; asymmetric norm; dimension reduction; quan- tile; expectile;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2014-001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RDC-Team (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.