IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2010-013.html
   My bibliography  Save this paper

The dynamics of hourly electricity prices

Author

Listed:
  • Wolfgang Karl Härdle
  • Stefan Trück

Abstract

The dynamics of hourly electricity prices in day-ahead markets is an important element of competitive power markets that were only established in the last decade. In electricity markets, the market microstructure does not allow for continuous trading, since operators require advance notice in order to verify that the schedule is feasible and lies within transmission constraints. Instead agents have to submit their bids and offers for delivery of electricity for all hours of the next day before a specified market closing time. We suggest the use of dynamic semiparametric factor models (DSFM) for the behavior of hourly electricity prices. We find that a model with three factors is able to explain already a high proportion of the variation in hourly electricity prices. Our analysis also provides insights into the characteristics of the market, in particular with respect to the driving factors of hourly prices and their dynamic behavior through time.

Suggested Citation

  • Wolfgang Karl Härdle & Stefan Trück, 2010. "The dynamics of hourly electricity prices," SFB 649 Discussion Papers SFB649DP2010-013, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2010-013
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2010-013.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Tanabe, Yasuo, 2006. "The propagation of chaos for interacting individuals in a large population," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 125-152, March.
    2. Blume Lawrence E., 1995. "The Statistical Mechanics of Best-Response Strategy Revision," Games and Economic Behavior, Elsevier, vol. 11(2), pages 111-145, November.
    3. Bisin, Alberto & Horst, Ulrich & Ozgur, Onur, 2006. "Rational expectations equilibria of economies with local interactions," Journal of Economic Theory, Elsevier, vol. 127(1), pages 74-116, March.
    4. Horst, Ulrich & Scheinkman, Jose A., 2006. "Equilibria in systems of social interactions," Journal of Economic Theory, Elsevier, vol. 130(1), pages 44-77, September.
    5. Horst, Ulrich, 2007. "Stochastic cascades, credit contagion, and large portfolio losses," Journal of Economic Behavior & Organization, Elsevier, vol. 63(1), pages 25-54, May.
    6. Yannis Ioannides, 2006. "Topologies of social interactions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 559-584, August.
    7. William A. Brock & Steven N. Durlauf, 2001. "Discrete Choice with Social Interactions," Review of Economic Studies, Oxford University Press, vol. 68(2), pages 235-260.
    8. Franklin Allen & Douglas Gale, 2000. "Financial Contagion," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 1-33, February.
    9. Blume Lawrence E., 1993. "The Statistical Mechanics of Strategic Interaction," Games and Economic Behavior, Elsevier, vol. 5(3), pages 387-424, July.
    10. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    11. Michel BenaÔm & J–rgen W. Weibull, 2003. "Deterministic Approximation of Stochastic Evolution in Games," Econometrica, Econometric Society, vol. 71(3), pages 873-903, May.
    12. Steven N. Durlauf, 1993. "Nonergodic Economic Growth," Review of Economic Studies, Oxford University Press, vol. 60(2), pages 349-366.
    13. Kurtz, Thomas G., 1978. "Strong approximation theorems for density dependent Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 6(3), pages 223-240, February.
    14. Michael Kosfeld, 2002. "Stochastic strategy adjustment in coordination games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(2), pages 321-339.
    15. Follmer, Hans, 1974. "Random economies with many interacting agents," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 51-62, March.
    16. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    17. Kosfeld, Michael, 2005. "Rumours and markets," Journal of Mathematical Economics, Elsevier, vol. 41(6), pages 646-664, September.
    18. Giorgio Topa, 2001. "Social Interactions, Local Spillovers and Unemployment," Review of Economic Studies, Oxford University Press, vol. 68(2), pages 261-295.
    19. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics,in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186 Elsevier.
    20. Föllmer, Hans & Horst, Ulrich, 2001. "Convergence of locally and globally interacting Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 96(1), pages 99-121, November.
    21. Alan P. Kirman, 1992. "Whom or What Does the Representative Individual Represent?," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 117-136, Spring.
    22. Ioannides, Yannis M. & Soetevent, Adriaan R., 2007. "Social networking and individual outcomes beyond the mean field case," Journal of Economic Behavior & Organization, Elsevier, vol. 64(3-4), pages 369-390.
    23. Vives, Xavier, 1990. "Nash equilibrium with strategic complementarities," Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 305-321.
    24. Ulrich Horst, 2005. "Financial price fluctuations in a stock market model with many interacting agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 25(4), pages 917-932, June.
    25. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-1277, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    2. Liebl, Dominik, 2010. "Modeling hourly Electricity Spot Market Prices as non stationary functional times series," MPRA Paper 25017, University Library of Munich, Germany.
    3. Liebl, Dominik, 2010. "Estimation of the Semiparametric Factor Model: Application to Modelling Time Series of Electricity Spot Prices," MPRA Paper 26800, University Library of Munich, Germany.
    4. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    5. Katarzyna Maciejowska & Rafał Weron, 2015. "Forecasting of daily electricity prices with factor models: utilizing intra-day and inter-zone relationships," Computational Statistics, Springer, vol. 30(3), pages 805-819, September.
    6. Christian Pape & Arne Vogler & Oliver Woll & Christoph Weber, 2017. "Forecasting the distributions of hourly electricity spot prices," EWL Working Papers 1705, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised May 2017.
    7. Wolfgang Karl Härdle,Piotr Majer & Melanie Schienle, 2012. "Yield Curve Modeling and Forecasting using Semiparametric Factor Dynamics," SFB 649 Discussion Papers SFB649DP2012-048, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    More about this item

    Keywords

    Power Markets; Dynamic Semiparametric Factor Models; Day-ahead Electricity Prices;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2010-013. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.