IDEAS home Printed from
   My bibliography  Save this paper

Nonparametric Identification of Multivariate Mixtures


  • Kasahara, Hiroyuki
  • Shimotsu, Katsumi


This article analyzes the identifiability of k-variate, M-component finite mixture models in which each component distribution has independent marginals, including models in latent class analysis. Without making parametric assumptions on the component distributions, we investigate how one can identify the number of components and the component distributions from the distribution function of the observed data. We reveal an important link between the number of variables (k), the number of values each variable can take, and the number of identifiable components. A lower bound on the number of components (M) is nonparametrically identifiable if k >= 2, and the maximum identifiable number of components is determined by the number of different values each variable takes. When M is known, the mixing proportions and the component distributions are nonparametrically identified from matrices constructed from the distribution function of the data if (i) k >= 3, (ii) two of k variables take at least M different values, and (iii) these matrices satisfy some rank and eigenvalue conditions. For the unknown M case, we propose an algorithm that possibly identifies M and the component distributions from data. We discuss a condition for nonparametric identi fication and its observable implications. In case M cannot be identified, we use our identification condition to develop a procedure that consistently estimates a lower bound on the number of components by estimating the rank of a matrix constructed from the distribution function of observed variables.

Suggested Citation

  • Kasahara, Hiroyuki & Shimotsu, Katsumi, 2010. "Nonparametric Identification of Multivariate Mixtures," Discussion Papers 2010-09, Graduate School of Economics, Hitotsubashi University.
  • Handle: RePEc:hit:econdp:2010-09

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Robin, Jean-Marc & Smith, Richard J., 2000. "Tests Of Rank," Econometric Theory, Cambridge University Press, vol. 16(02), pages 151-175, April.
    Full references (including those not matched with items on IDEAS)

    More about this item


    finite mixture; latent class analysis; latent class model; model selection; number of components; rank estimation;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:econdp:2010-09. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Digital Resources Section, Hitotsubashi University Library). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.