IDEAS home Printed from https://ideas.repec.org/p/hhs/hastef/0614.html
   My bibliography  Save this paper

Correlation Between Intensity and Recovery in Credit Risk Models

Author

Listed:

Abstract

We start by presenting a reduced-form multiple default type of model and derive abstract results on the influence of a state variable X on credit spreads, when both the intensity and the loss quota distribution are driven by X. The aim is to apply the results to a concrete real life situation, namely, to the influence of macroeconomic risks on credit spreads term structures. There has been increasing support in the empirical literature that both the probability of default (PD) and the loss given default (LGD) are correlated and driven by macroeconomic variables. Paradoxically, there has been very little effort from the theoretical literature to develop credit risk models that would include this possibility. A possible justification has to do with the increase in complexity this leads to, even for the "treatable" default intensity models. The goal of this paper is to develop the theoretical framework needed to handle this situation and, through numerical simulation, understand the impact on credit risk term structures of the macroeconomic risks. In the proposed model the state of the economy is modeled trough the dynamics of a market index, that enters directly on the functional form of both the intensity of default and the distribution of the loss quota given default. Given this setup, we are able to make periods of economic depression, periods of higher default intensity as well as periods where low recovery is more likely, producing a business cycle effect. Furthermore, we allow for the possibility of an index volatility that depends negatively on the index level and show that, when we include this realistic feature, the impacts on the credit spread term structure are emphasized.

Suggested Citation

  • Gaspar, Raquel M. & Slinko, Irina, 2005. "Correlation Between Intensity and Recovery in Credit Risk Models," SSE/EFI Working Paper Series in Economics and Finance 614, Stockholm School of Economics.
  • Handle: RePEc:hhs:hastef:0614
    as

    Download full text from publisher

    File URL: http://swopec.hhs.se/hastef/papers/hastef0614.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Edward Altman & Andrea Resti & Andrea Sironi, 2004. "Default Recovery Rates in Credit Risk Modelling: A Review of the Literature and Empirical Evidence," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 33(2), pages 183-208, July.
    2. Gaspar, Raquel M. & Schmidt, Thorsten, 2005. "Quadratic Portfolio Credit Risk models with Shot-noise Effects," SSE/EFI Working Paper Series in Economics and Finance 616, Stockholm School of Economics.
    3. Elton, Edwin J. & Gruber, Martin J. & Agrawal, Deepak & Mann, Christopher, 2004. "Factors affecting the valuation of corporate bonds," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2747-2767, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaspar, Raquel M. & Schmidt, Thorsten, 2005. "Quadratic Portfolio Credit Risk models with Shot-noise Effects," SSE/EFI Working Paper Series in Economics and Finance 616, Stockholm School of Economics.

    More about this item

    Keywords

    Credit risk; sistematic risk; intensity models; recovery; credit spreads;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0614. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helena Lundin). General contact details of provider: http://edirc.repec.org/data/erhhsse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.