IDEAS home Printed from
   My bibliography  Save this paper

When does Heckman’s two-step procedure for censored data work and when does it not?


  • Jonsson, Robert

    () (Department of Economics, School of Business, Economics and Law, University of Gothenburg)


Heckman’s two-step procedure (Heckit) for estimating the parameters in linear models from censored data is frequently used by econometricians, despite of the fact that earlier studies cast doubt on the procedure. In this paper it is shown that estimates of the hazard h for approaching the censoring limit, the latter being used as an explanatory variable in the second step of the Heckit, can induce multicollinearity. The influence of the censoring proportion and sample size upon bias and variance in three types of random linear models are studied by simulations. From these results a simple relation is established that describes how absolute bias depends on the censoring proportion and the sample size. It is also shown that the Heckit may work with non-normal (Laplace) distributions, but it collapses if h deviates too much from that of the normal distribution. Data from a study of work resumption after sick-listing are used to demonstrate that the Heckit can be very risky.

Suggested Citation

  • Jonsson, Robert, 2008. "When does Heckman’s two-step procedure for censored data work and when does it not?," Research Reports 2008:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
  • Handle: RePEc:hhs:gunsru:2008_002

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters,in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492 National Bureau of Economic Research, Inc.
    2. Yuzo Honda, 1985. "Testing the Error Components Model with Non-Normal Disturbances," Review of Economic Studies, Oxford University Press, vol. 52(4), pages 681-690.
    3. Paarsch, Harry J., 1984. "A Monte Carlo comparison of estimators for censored regression models," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 197-213.
    4. Newey, Whitney K., 2001. "Conditional Moment Restrictions In Censored And Truncated Regression Models," Econometric Theory, Cambridge University Press, vol. 17(05), pages 863-888, October.
    5. Lennart Flood & Urban Gråsjo, 2001. "A Monte Carlo simulation study of Tobit models," Applied Economics Letters, Taylor & Francis Journals, vol. 8(9), pages 581-584.
    6. Nelson, Forrest D., 1984. "Efficiency of the two-step estimator for models with endogenous sample selection," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 181-196.
    7. Rosett, Richard N & Nelson, Forrest D, 1975. "Estimation of the Two-Limit Probit Regression Model," Econometrica, Econometric Society, vol. 43(1), pages 141-146, January.
    8. Puhani, Patrick A, 2000. " The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    9. Frisén, Marianne & Andersson, Eva & Schiöler, Linus, 2007. "Robust outbreak surveillance of epidemics in Sweden," Research Reports 2007:12, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Censoring; Cross-sectional and panel data; Hazard; Multicollinearity;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunsru:2008_002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Linus Schiöler). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.