IDEAS home Printed from https://ideas.repec.org/p/hhb/aarfin/2002_024.html
   My bibliography  Save this paper

On the Suboptimality of Single-Factor Exercise Strategies for Bermudan Swaptions

Author

Listed:

Abstract

In this paper we examine the cost of using recalibrated single-factor models to determine the exercise strategy for Bermudan swaptions in a multi-factor world. We demonstrate that single-factor exercise strategies applied in a multi-factor world only give rise to economically insignificant losses. Furthermore, we find that the conditional model risk as defined in Longstaff, Santa-Clara & Schwartz (2001), is statistically insignificant given the number of observations. Additional tests using the Primal-Dual algorithm of Andersen & Broadie (2001) indicate that losses found in Longstaff et al. (2001) cannot as claimed be ascribed to the number of factors. Finally we find that for valuation of Bermudan swaptions with long exercise periods, the simple approach proposed in Andersen (2000) is outperformed by the Least Square Monte Carlo method of Longstaff & Schwartz (2001) and, surprisingly, also by the exercise strategies from the single-factor models.

Suggested Citation

  • Svenstrup, Mikkel, 2003. "On the Suboptimality of Single-Factor Exercise Strategies for Bermudan Swaptions," Finance Working Papers 02-24, University of Aarhus, Aarhus School of Business, Department of Business Studies.
  • Handle: RePEc:hhb:aarfin:2002_024
    as

    Download full text from publisher

    File URL: http://www.hha.dk/~MSV/facdep.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Rong Fan & Anurag Gupta & Peter Ritchken, 2003. "Hedging in the Possible Presence of Unspanned Stochastic Volatility: Evidence from Swaption Markets," Journal of Finance, American Finance Association, vol. 58(5), pages 2219-2248, October.
    3. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    4. Wolfgang Bühler & Marliese Uhrig‐Homburg & Ulrich Walter & Thomas Weber, 1999. "An Empirical Comparison of Forward‐Rate and Spot‐Rate Models for Valuing Interest‐Rate Options," Journal of Finance, American Finance Association, vol. 54(1), pages 269-305, February.
    5. Driessen, J.J.A.G. & Klaassen, P. & Melenberg, B., 2000. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Other publications TiSEM f96eb284-4de9-48c3-8371-8, Tilburg University, School of Economics and Management.
    6. Driessen, Joost & Klaassen, Pieter & Melenberg, Bertrand, 2003. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(3), pages 635-672, September.
    7. T. Clifton Green & Stephen Figlewski, 1999. "Market Risk and Model Risk for a Financial Institution Writing Options," Journal of Finance, American Finance Association, vol. 54(4), pages 1465-1499, August.
    8. Pierre Collin‐Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, August.
    9. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    10. Rasmussen, Nicki Søndergaard, 2002. "Efficient Control Variates for Monte-Carlo Valuation of American Options," Finance Working Papers 02-17, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    11. Leif Andersen & Jesper Andreasen, 2000. "Volatility skews and extensions of the Libor market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(1), pages 1-32.
    12. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    13. Jensen, Malene Shin & Svenstrup, Mikkel, 2002. "Efficient Control Variates and Strategies for Bermudan Swaptions in a Libor Market Model," Finance Working Papers 02-23, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    14. Gupta, Anurag & Subrahmanyam, Marti G., 2005. "Pricing and hedging interest rate options: Evidence from cap-floor markets," Journal of Banking & Finance, Elsevier, vol. 29(3), pages 701-733, March.
    15. Longstaff, Francis A. & Santa-Clara, Pedro & Schwartz, Eduardo S., 2001. "Throwing away a billion dollars: the cost of suboptimal exercise strategies in the swaptions market," Journal of Financial Economics, Elsevier, vol. 62(1), pages 39-66, October.
    16. repec:cdl:anderf:qt43n1k4jb is not listed on IDEAS
    17. Litzenberger, Robert H, 1992. "Swaps: Plain and Fanciful," Journal of Finance, American Finance Association, vol. 47(3), pages 831-850, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svenstrup, Mikkel, 2005. "On the suboptimality of single-factor exercise strategies for Bermudan swaptions," Journal of Financial Economics, Elsevier, vol. 78(3), pages 651-684, December.
    2. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    3. Sami Attaoui, 2011. "Hedging performance of the Libor market model: the cap market case," Applied Financial Economics, Taylor & Francis Journals, vol. 21(16), pages 1215-1223.
    4. Jensen, Malene Shin & Svenstrup, Mikkel, 2002. "Efficient Control Variates and Strategies for Bermudan Swaptions in a Libor Market Model," Finance Working Papers 02-23, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Qiang Dai & Kenneth Singleton, 2003. "Term Structure Dynamics in Theory and Reality," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 631-678, July.
    7. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    8. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    9. Longstaff, Francis A. & Santa-Clara, Pedro & Schwartz, Eduardo S., 2001. "Throwing away a billion dollars: the cost of suboptimal exercise strategies in the swaptions market," Journal of Financial Economics, Elsevier, vol. 62(1), pages 39-66, October.
    10. Dariusz Gatarek & Juliusz Jabłecki, 2021. "Between Scylla and Charybdis: The Bermudan Swaptions Pricing Odyssey," Mathematics, MDPI, vol. 9(2), pages 1-32, January.
    11. repec:cdl:anderf:qt65f1914p is not listed on IDEAS
    12. Massoud Heidari & Liuren Wu, 2002. "Term Structure of Interest Rates, Yield Curve Residuals, and the Consistent Pricing of Interest Rates and Interest Rate Derivatives," Finance 0207010, University Library of Munich, Germany, revised 10 Sep 2002.
    13. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    14. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    15. Raoul Pietersz & Marcel Regenmortel, 2006. "Generic market models," Finance and Stochastics, Springer, vol. 10(4), pages 507-528, December.
      • Pietersz, R. & van Regenmortel, M., 2005. "Generic Market Models," ERIM Report Series Research in Management ERS-2005-010-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
      • Raoul Pietersz & Marcel van Regenmortel, 2005. "Generic Market Models," Finance 0502009, University Library of Munich, Germany.
    16. Haitao Li & Feng Zhao, 2009. "Nonparametric Estimation of State-Price Densities Implicit in Interest Rate Cap Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4335-4376, November.
    17. I‐Doun Kuo & Kai‐Li Wang, 2009. "Implied deterministic volatility functions: An empirical test for Euribor options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(4), pages 319-347, April.
    18. Feng Zhao & Robert Jarrow & Haitao Li, 2004. "Interest Rate Caps Smile Too! But Can the LIBOR Market Models Capture It?," Econometric Society 2004 North American Winter Meetings 431, Econometric Society.
    19. Backwell, Alex, 2021. "Unspanned stochastic volatility from an empirical and practical perspective," Journal of Banking & Finance, Elsevier, vol. 122(C).
    20. Mireille Bossy & Rajna Gibson & Francois-Serge Lhabitant & Nathalie Pistre & Denis Talay, 2006. "Model misspecification analysis for bond options and Markovian hedging strategies," Review of Derivatives Research, Springer, vol. 9(2), pages 109-135, September.
    21. Robert Jarrow & Haitao Li & Feng Zhao, 2007. "Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture the Smile?," Journal of Finance, American Finance Association, vol. 62(1), pages 345-382, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhb:aarfin:2002_024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helle Vinbaek Stenholt The email address of this maintainer does not seem to be valid anymore. Please ask Helle Vinbaek Stenholt to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/ifhhadk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.