IDEAS home Printed from https://ideas.repec.org/p/han/dpaper/dp-279.html
   My bibliography  Save this paper

An Experimental Investigation of the Role of Errors for Explaining Violations of Expected Utility

Author

Listed:
  • Schmidt, Ulrich
  • Neugebauer, Tibor

Abstract

One possible conclusion from recent experimental research on decision making under risk is that observed behaviour can be reasonable accommodated by expected utility plus an error term. This conclusion implies that the violation rate of expected utility should decrease if errors are excluded. The present paper presents an experiment which investigates this implication. Indeed, the results show that the exclusion of errors leads to a significant reduction of the violation rate for most of the subjects and most of the choice problems under risk. However, it turns out that for decision problems under ambiguity the exclusion of errors in contrast increases the violation rate significantly. In this sense the Ellsberg paradox can be regarded as a more serious challenge of expected utility than the Allais paradox. More general, while expected utility plus error term may be regarded as a reasonable representation for choice under risk this does not seem to be true for ambiguous choice problems.

Suggested Citation

  • Schmidt, Ulrich & Neugebauer, Tibor, 2003. "An Experimental Investigation of the Role of Errors for Explaining Violations of Expected Utility," Hannover Economic Papers (HEP) dp-279, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  • Handle: RePEc:han:dpaper:dp-279
    as

    Download full text from publisher

    File URL: http://diskussionspapiere.wiwi.uni-hannover.de/pdf_bib/dp-279.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Loomes, Graham & Moffatt, Peter G & Sugden, Robert, 2002. "A Microeconometric Test of Alternative Stochastic Theories of Risky Choice," Journal of Risk and Uncertainty, Springer, vol. 24(2), pages 103-130, March.
    2. Enrica Carbone & John D. Hey, 2018. "Which Error Story is Best?," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 16, pages 365-380, World Scientific Publishing Co. Pte. Ltd..
    3. John D. Hey & Chris Orme, 2018. "Investigating Generalizations Of Expected Utility Theory Using Experimental Data," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 3, pages 63-98, World Scientific Publishing Co. Pte. Ltd..
    4. John D. Hey, 2018. "Experimental investigations of errors in decision making under risk," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 17, pages 381-388, World Scientific Publishing Co. Pte. Ltd..
    5. Harless, David W & Camerer, Colin F, 1994. "The Predictive Utility of Generalized Expected Utility Theories," Econometrica, Econometric Society, vol. 62(6), pages 1251-1289, November.
    6. Ballinger, T Parker & Wilcox, Nathaniel T, 1997. "Decisions, Error and Heterogeneity," Economic Journal, Royal Economic Society, vol. 107(443), pages 1090-1105, July.
    7. Chris Starmer, 2000. "Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk," Journal of Economic Literature, American Economic Association, vol. 38(2), pages 332-382, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neugebauer, Tibor & Perote, Javier & Schmidt, Ulrich & Loos, Malte, 2009. "Selfish-biased conditional cooperation: On the decline of contributions in repeated public goods experiments," Journal of Economic Psychology, Elsevier, vol. 30(1), pages 52-60, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John D. Hey, 2018. "Why We Should Not Be Silent About Noise," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 13, pages 309-329, World Scientific Publishing Co. Pte. Ltd..
    2. Henry Stott, 2006. "Cumulative prospect theory's functional menagerie," Journal of Risk and Uncertainty, Springer, vol. 32(2), pages 101-130, March.
    3. Pavlo Blavatskyy, 2007. "Stochastic expected utility theory," Journal of Risk and Uncertainty, Springer, vol. 34(3), pages 259-286, June.
    4. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE.
    5. Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet E., 2010. "Behavioral econometrics for psychologists," Journal of Economic Psychology, Elsevier, vol. 31(4), pages 553-576, August.
    6. Anna Conte & John D. Hey & Peter G. Moffatt, 2018. "Mixture models of choice under risk," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 1, pages 3-12, World Scientific Publishing Co. Pte. Ltd..
    7. John Hey & Andrea Morone & Ulrich Schmidt, 2009. "Noise and bias in eliciting preferences," Journal of Risk and Uncertainty, Springer, vol. 39(3), pages 213-235, December.
    8. David M. Bruner, 2017. "Does decision error decrease with risk aversion?," Experimental Economics, Springer;Economic Science Association, vol. 20(1), pages 259-273, March.
    9. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE.
    10. Charles Mason & Jason Shogren & Chad Settle & John List, 2005. "Investigating Risky Choices Over Losses Using Experimental Data," Journal of Risk and Uncertainty, Springer, vol. 31(2), pages 187-215, September.
    11. Hans-Martin Gaudecker & Arthur Soest & Erik Wengström, 2012. "Experts in experiments," Journal of Risk and Uncertainty, Springer, vol. 45(2), pages 159-190, October.
    12. Egil Matsen & Bjarne Strøm, 2006. "Joker: Choice in a simple game with large stakes," Working Paper Series 8307, Department of Economics, Norwegian University of Science and Technology.
    13. Glenn W. Harrison & John A. List, 2004. "Field Experiments," Journal of Economic Literature, American Economic Association, vol. 42(4), pages 1009-1055, December.
    14. Clintin P. Davis-Stober & Nicholas Brown, 2011. "A shift in strategy or "error"? Strategy classification over multiple stochastic specifications," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 6(8), pages 800-813, December.
    15. Di Caprio, Debora & Santos-Arteaga, Francisco J., 2011. "Cardinal versus ordinal criteria in choice under risk with disconnected utility ranges," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 588-594.
    16. Pavlo Blavatskyy, 2018. "A second-generation disappointment aversion theory of decision making under risk," Theory and Decision, Springer, vol. 84(1), pages 29-60, January.
    17. Sarah Jacobson & Ragan Petrie, 2009. "Learning from mistakes: What do inconsistent choices over risk tell us?," Journal of Risk and Uncertainty, Springer, vol. 38(2), pages 143-158, April.
    18. Guido Baltussen & G. Post & Martijn Assem & Peter Wakker, 2012. "Random incentive systems in a dynamic choice experiment," Experimental Economics, Springer;Economic Science Association, vol. 15(3), pages 418-443, September.
    19. Michael H. Birnbaum & Ulrich Schmidt & Miriam D. Schneider, 2017. "Testing independence conditions in the presence of errors and splitting effects," Journal of Risk and Uncertainty, Springer, vol. 54(1), pages 61-85, February.
    20. Adam Booij & Bernard Praag & Gijs Kuilen, 2010. "A parametric analysis of prospect theory’s functionals for the general population," Theory and Decision, Springer, vol. 68(1), pages 115-148, February.

    More about this item

    Keywords

    expected utility; choice errors; Allais paradox; Ellsberg paradox;
    All these keywords.

    JEL classification:

    • C9 - Mathematical and Quantitative Methods - - Design of Experiments
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:han:dpaper:dp-279. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/fwhande.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Heidrich, Christian (email available below). General contact details of provider: https://edirc.repec.org/data/fwhande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.