IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03758093.html
   My bibliography  Save this paper

Modeling Commodity Price Dynamics

Author

Listed:
  • David Lee

    (FinPricing)

Abstract

The random component of commodity future prices can be generally broken down into major contributors or factors. These are known as principal components. In this paper, we present a multifactor framework for modeling commodity price dynamics. We develop a generic procedure for the model calibration. The calibration procedure consists of an offline step and an online step. Empirical and numeric study shows that the model prices fluctuate randomly around the market prices, indicating prima facie that the model performs quite well.

Suggested Citation

  • David Lee, 2022. "Modeling Commodity Price Dynamics," Working Papers hal-03758093, HAL.
  • Handle: RePEc:hal:wpaper:hal-03758093
    Note: View the original document on HAL open archive server: https://hal.science/hal-03758093
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03758093/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    3. Fred Espen Benth & Jūratė Šaltytė-Benth, 2004. "The Normal Inverse Gaussian Distribution And Spot Price Modelling In Energy Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 177-192.
    4. Ladokhin, Sergiy & Borovkova, Svetlana, 2021. "Three-factor commodity forward curve model and its joint P and Q dynamics," Energy Economics, Elsevier, vol. 101(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, David, 2022. "Generic Price Model for Commodity Derivatives," MPRA Paper 114283, University Library of Munich, Germany.
    2. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    3. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.
    4. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    5. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    6. Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Jumps in commodity markets," Journal of Commodity Markets, Elsevier, vol. 13(C), pages 55-70.
    7. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    8. Abdullah Almansour and Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    9. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    10. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    11. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 127-153, May.
    12. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    13. Luis M. Abadie & José M. Chamorro, 2009. "Monte Carlo valuation of natural gas investments," Review of Financial Economics, John Wiley & Sons, vol. 18(1), pages 10-22, January.
    14. Villaplana Conde, Pablo, 2003. "Pricing power derivatives: a two-factor jump-diffusion approach," DEE - Working Papers. Business Economics. WB wb031805, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    15. Insley, M.C. & Wirjanto, T.S., 2010. "Contrasting two approaches in real options valuation: Contingent claims versus dynamic programming," Journal of Forest Economics, Elsevier, vol. 16(2), pages 157-176, April.
    16. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    17. Hustveit, Magne & Frogner, Jens Sveen & Fleten, Stein-Erik, 2017. "Tradable green certificates for renewable support: The role of expectations and uncertainty," Energy, Elsevier, vol. 141(C), pages 1717-1727.
    18. Na Jin & Sergio Lence & Chad Hart & Dermot Hayes, 2012. "The Long-Term Structure of Commodity Futures," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 718-735.
    19. Nikolay Gospodinov & Ibrahim Jamali, 2018. "Monetary policy uncertainty, positions of traders and changes in commodity futures prices," European Financial Management, European Financial Management Association, vol. 24(2), pages 239-260, March.
    20. Fleten, Stein-Erik & Näsäkkälä, Erkka, 2003. "Gas fired power plants: Investment timing, operating flexibility and abandonment," MPRA Paper 217, University Library of Munich, Germany, revised Jun 2006.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03758093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.