IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00740347.html
   My bibliography  Save this paper

Dynamic System Optimal Routing In Multimodal Transit Network

Author

Listed:
  • Tai-Yu Ma

    () (LET - Laboratoire d'économie des transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique)

  • Jean-Patrick Lebacque

    () (IFSTTAR/GRETTIA - Génie des Réseaux de Transport Terrestres et Informatique Avancée - IFSTTAR - Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12)

Abstract

The system optimal routing problem has been widely studied for road network while it is less considered for public transit system. Traditional shortest-path-based multimodal itinerary guidance systems may deteriorate the system performance when the assigned lines become congested. For this issue, we formulate the dynamic system optimal routing model for multimodal transit system. The transit system is represented by a multilevel graph to explicitly simulate passenger flow and transit system operations. A solution algorithm based on the cross entropy method is proposed, and its performance is compared with the method of successive averages in static and dynamic cases. Numerical study on a simple multimodal transit network provides the basis for comparing the system optimal routing and user optimal routing under different congestion levels.

Suggested Citation

  • Tai-Yu Ma & Jean-Patrick Lebacque, 2012. "Dynamic System Optimal Routing In Multimodal Transit Network," Working Papers hal-00740347, HAL.
  • Handle: RePEc:hal:wpaper:hal-00740347
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-00740347
    as

    Download full text from publisher

    File URL: https://hal.archives-ouvertes.fr/hal-00740347/document
    Download Restriction: no

    References listed on IDEAS

    as
    1. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    system optimal routing; multimodal; transit;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00740347. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.