IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05098129.html
   My bibliography  Save this paper

Détection des bulles financières sur le marché boursier marocain : une application du test augmente de dickey-fuller

Author

Listed:
  • Nabil El Malih

    (Faculté des sciences juridiques, économiques et sociales d’Ain Choc Casablanca Université HASSAN II, Casablanca, Maroc)

Abstract

Résumé : Dans cette étude, nous nous sommes concentrés sur l'existence de bulles financières dans le contexte du marché boursier marocain, en faisant référence à l'indice MASI. Reconnaissant la présence d'une bulle pendant la période 2003-2008, nous avons utilisé le test ADF, qui est une technique standard utilisée pour traiter les racines unitaires dans les séries chronologiques. Cette période a été marquée par une frénésie générale du marché boursier et s'est terminée avec la crise financière mondiale de 2008, et nos résultats sont donc cohérents avec des études précédentes qui ont montré que des bulles s'étaient formées dans d'autres marchés émergents. Cependant, il est important de noter que le test ADF a ses propres limites. Sa sensibilité aux points de rupture et aux changements de régime peut parfois entraîner des résultats biaisés. De plus, le fait qu'une racine unitaire ait été prétendument existante n'est pas une preuve catégorique de la présence active d'une bulle. Il existe également d'autres méthodes telles que les tests GSADF ou les modèles de changement de régime qui pourrait apporter des éclairages supplémentaires. En dehors des considérations statistiques, il est également important d'évaluer les déterminants psychologiques et fondamentaux de l'émergence des bulles. Le comportement de troupeau, la confiance excessive, les biais cognitifs, les conditions économiques favorables et une politique monétaire accommodante. Mots-clès : bulle financière, test Augmented Dickey Fuller, l'indice boursier MASI, krach boursier, l'excès de confiance, crises financières Classification JEL : G01, G12, G14 Type de l'article : Recherche Empirique Abstract: In this study, we focused on the existence of financial bubbles in the context of the Moroccan stock market, referring to the MASI index. Recognizing the presence of a bubble during the period 2003-2008, we used the ADF test, which is a standard technique used to address unit roots in time series. This period was marked by a general frenzy in the stock market and ended with the global financial crisis of 2008, and our results are therefore consistent with previous studies that showed bubbles had formed in other emerging markets. However, it is important to note that the ADF test has its own limitations. Its sensitivity to breakpoints and regime changes can sometimes lead to biased results. Moreover, the fact that a unit root was allegedly present is not conclusive evidence of the active presence of a bubble. There are also other methods such as GSADF tests or regime change models that could provide additional insights. Apart from statistical considerations, it is also important to evaluate the psychological and fundamental determinants of the emergence of bubbles. Herd behavior, excessive confidence, cognitive biases, favorable economic conditions, and an accommodative monetary policy. Keywords: financial bubble, Augmented Dickey Fuller test, MASI stock market index, stock market crash, Overconfidence, financial crises JEL Classification: G01, G12, G14 Papertype: Empirical Research

Suggested Citation

  • Nabil El Malih, 2024. "Détection des bulles financières sur le marché boursier marocain : une application du test augmente de dickey-fuller," Post-Print hal-05098129, HAL.
  • Handle: RePEc:hal:journl:hal-05098129
    DOI: 10.5281/zenodo.14286090
    Note: View the original document on HAL open archive server: https://hal.science/hal-05098129v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-05098129v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.5281/zenodo.14286090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F. & French, Kenneth R., 2017. "International tests of a five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 123(3), pages 441-463.
    2. Patrick Bisciari & Alain Durré, 2005. "La bulle « Internet », un remake de la bulle de 1929 ?," Revue d'Économie Financière, Programme National Persée, vol. 81(4), pages 157-169.
    3. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    4. André Orléan, 1992. "Contagion des opinions et fonctionnement des marchés financiers," Revue Économique, Programme National Persée, vol. 43(4), pages 685-698.
    5. Pengfei Wang & Yi Wen, 2012. "Speculative Bubbles and Financial Crises," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 184-221, July.
    6. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    7. Tirole, Jean, 1985. "Asset Bubbles and Overlapping Generations," Econometrica, Econometric Society, vol. 53(6), pages 1499-1528, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doncho Donev, 2017. "Price bubbles and financial markets efficiency," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 115-131.
    2. Nobel Prize Committee, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    3. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    4. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    5. Klodt, Henning & Lehment, Harmen (ed.), 2009. "The Crisis and Beyond," Kiel E-Books, Kiel Institute for the World Economy (IfW Kiel), number 60981.
    6. David Peón & Anxo Calvo, 2012. "Using Behavioral Economics to Analyze Credit Policies in the Banking Industry," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 145-160.
    7. Monica Martinez-Blasco & Vanessa Serrano & Francesc Prior & Jordi Cuadros, 2023. "Analysis of an event study using the Fama–French five-factor model: teaching approaches including spreadsheets and the R programming language," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-34, December.
    8. Giuseppe Pernagallo & Benedetto Torrisi, 2020. "A theory of information overload applied to perfectly efficient financial markets," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 14(2), pages 223-236, October.
    9. Jing-Yi Chen & Ming-Hui Wang, 2023. "A Study on Real Estate Purchase Decisions," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    10. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857.
    11. Robin Maximilian Stetzka & Stefan Winter, 2023. "How rational is gambling?," Journal of Economic Surveys, Wiley Blackwell, vol. 37(4), pages 1432-1488, September.
    12. Giuseppe Garofalo, 2014. "Irreducible complexities: from Gödel and Turing to the paradigm of Imperfect Knowledge Economics," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3463-3474, November.
    13. He, Yiyao, 2022. "Heterogeneous stock traders, endogenous bubbles, and economic fluctuations," Finance Research Letters, Elsevier, vol. 47(PA).
    14. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    15. Maschke Mario & Schmidt Ulrich, 2011. "Das Wettmonopol in Deutschland: Status quo und Reformansätze," Zeitschrift für Wirtschaftspolitik, De Gruyter, vol. 60(1), pages 110-124, April.
    16. Ellahie, Atif, 2024. "Accounting for bubbles: A discussion of Arif and Sul (2024)," Journal of Accounting and Economics, Elsevier, vol. 78(2).
    17. Betül Çal, 2015. "Reconciliation of Expectancy-Valence and Expectation-Disconfirmation Paradigms in Investment Decisions: Case of Turkish Equity Investors," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 5(1), pages 15-32, January.
    18. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    19. Jasman Tuyon & Zamri Ahmada, 2016. "Behavioural finance perspectives on Malaysian stock market efficiency," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(1), pages 43-61, March.
    20. Piasecki, Krzysztof, 2011. "Rozmyte zbiory probabilistyczne jako narzędzie finansów behawioralnych [Fuzzy Probabilistic Sets as a Tool for Behavioural Finance]," MPRA Paper 46218, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G01 - Financial Economics - - General - - - Financial Crises
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05098129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.