DeepSets and their derivative networks for solving symmetric PDEs
Author
Abstract
Suggested Citation
DOI: 10.1007/s10915-022-01796-w
Note: View the original document on HAL open archive server: https://hal.science/hal-03154116v2
Download full text from publisher
References listed on IDEAS
- Martin Hutzenthaler & Arnulf Jentzen & Thomas Kruse & Tuan Anh Nguyen, 2020. "A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations," Partial Differential Equations and Applications, Springer, vol. 1(2), pages 1-34, April.
- Matteo Basei & Huyên Pham, 2019. "A Weak Martingale Approach to Linear-Quadratic McKean–Vlasov Stochastic Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 347-382, May.
- Amine Ismail & Huyên Pham, 2019. "Robust Markowitz mean‐variance portfolio selection under ambiguous covariance matrix," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 174-207, January.
- Huyên Pham & Xavier Warin & Maximilien Germain, 2021. "Neural networks-based backward scheme for fully nonlinear PDEs," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-24, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Huyên Pham & Xavier Warin, 2025. "Actor-Critic Learning Algorithms for Mean-Field Control with Moment Neural Networks," Methodology and Computing in Applied Probability, Springer, vol. 27(1), pages 1-20, March.
- Aghapour, Ahmad & Arian, Hamid & Seco, Luis, 2025. "Deep-time neural networks: An efficient approach for solving high-dimensional PDEs," Applied Mathematics and Computation, Elsevier, vol. 488(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- William Lefebvre & Gregoire Loeper & Huy^en Pham, 2020. "Mean-variance portfolio selection with tracking error penalization," Papers 2009.08214, arXiv.org, revised Sep 2020.
- Willliam Lefebvre & Gregoire Loeper & Huyên Pham, 2020. "Mean-variance portfolio selection with tracking error penalization," Working Papers hal-02941289, HAL.
- Ren'e Aid & Ofelia Bonesini & Giorgia Callegaro & Luciano Campi, 2021. "A McKean-Vlasov game of commodity production, consumption and trading," Papers 2111.04391, arXiv.org.
- René Aïd & Matteo Basei & Huyên Pham, 2020. "A McKean–Vlasov approach to distributed electricity generation development," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 269-310, April.
- Rawin Assabumrungrat & Kentaro Minami & Masanori Hirano, 2023. "Error Analysis of Option Pricing via Deep PDE Solvers: Empirical Study," Papers 2311.07231, arXiv.org.
- Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Duality Theory for Robust Utility Maximisation," Papers 2007.08376, arXiv.org, revised Jun 2021.
- Jiang, Weixin & Wang, Junfang & Varbanov, Petar Sabev & Yuan, Qing & Chen, Yujie & Wang, Bohong & Yu, Bo, 2024. "Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation," Energy, Elsevier, vol. 292(C).
- Li, Wei & Zhang, Ying & Huang, Dongmei & Rajic, Vesna, 2022. "Study on stationary probability density of a stochastic tumor-immune model with simulation by ANN algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
- Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
- Arash Fahim & Md. Arafatur Rahman, 2025. "Gaining efficiency in deep policy gradient method for continuous-time optimal control problems," Papers 2502.14141, arXiv.org, revised Feb 2025.
- Živkov, Dejan & Balaban, Suzana & Simić, Milica, 2024. "Hedging gas in a multi-frequency semiparametric CVaR portfolio," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Nicole Bauerle & An Chen, 2022. "Optimal investment under partial information and robust VaR-type constraint," Papers 2212.04394, arXiv.org, revised Sep 2023.
- Bingyan Han & Chi Seng Pun & Hoi Ying Wong, 2021. "Robust state-dependent mean–variance portfolio selection: a closed-loop approach," Finance and Stochastics, Springer, vol. 25(3), pages 529-561, July.
- Shuzhen Yang, 2020. "Discrete time multi-period mean-variance model: Bellman type strategy and Empirical analysis," Papers 2011.10966, arXiv.org.
- Akihiko Takahashi & Toshihiro Yamada, 2023. "Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus," CIRJE F-Series CIRJE-F-1212, CIRJE, Faculty of Economics, University of Tokyo.
- Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2021. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Post-Print hal-02877569, HAL.
- Ariel Neufeld & Philipp Schmocker & Sizhou Wu, 2024. "Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs," Papers 2405.05192, arXiv.org, revised Jan 2025.
- Eduardo Abi Jaber & Enzo Miller & Huyên Pham, 2021. "Markowitz portfolio selection for multivariate affine and quadratic Volterra models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02877569, HAL.
- Ivan Guo & Nicolas Langrené & Gregoire Loeper & Wei Ning, 2020. "Robust utility maximization under model uncertainty via a penalization approach," Working Papers hal-02910261, HAL.
More about this item
Keywords
Permutation-invariant PDEs; symmetric neural networks; exchangeability; deep backward scheme; mean-field control;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-02-14 (Big Data)
- NEP-CMP-2022-02-14 (Computational Economics)
- NEP-HIS-2022-02-14 (Business, Economic and Financial History)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03154116. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.