IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.07231.html
   My bibliography  Save this paper

Error Analysis of Option Pricing via Deep PDE Solvers: Empirical Study

Author

Listed:
  • Rawin Assabumrungrat
  • Kentaro Minami
  • Masanori Hirano

Abstract

Option pricing, a fundamental problem in finance, often requires solving non-linear partial differential equations (PDEs). When dealing with multi-asset options, such as rainbow options, these PDEs become high-dimensional, leading to challenges posed by the curse of dimensionality. While deep learning-based PDE solvers have recently emerged as scalable solutions to this high-dimensional problem, their empirical and quantitative accuracy remains not well-understood, hindering their real-world applicability. In this study, we aimed to offer actionable insights into the utility of Deep PDE solvers for practical option pricing implementation. Through comparative experiments, we assessed the empirical performance of these solvers in high-dimensional contexts. Our investigation identified three primary sources of errors in Deep PDE solvers: (i) errors inherent in the specifications of the target option and underlying assets, (ii) errors originating from the asset model simulation methods, and (iii) errors stemming from the neural network training. Through ablation studies, we evaluated the individual impact of each error source. Our results indicate that the Deep BSDE method (DBSDE) is superior in performance and exhibits robustness against variations in option specifications. In contrast, some other methods are overly sensitive to option specifications, such as time to expiration. We also find that the performance of these methods improves inversely proportional to the square root of batch size and the number of time steps. This observation can aid in estimating computational resources for achieving desired accuracies with Deep PDE solvers.

Suggested Citation

  • Rawin Assabumrungrat & Kentaro Minami & Masanori Hirano, 2023. "Error Analysis of Option Pricing via Deep PDE Solvers: Empirical Study," Papers 2311.07231, arXiv.org.
  • Handle: RePEc:arx:papers:2311.07231
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.07231
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Hutzenthaler & Arnulf Jentzen & Thomas Kruse & Tuan Anh Nguyen, 2020. "A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations," Partial Differential Equations and Applications, Springer, vol. 1(2), pages 1-34, April.
    2. Riu Naito & Toshihiro Yamada, 2020. "An acceleration scheme for deep learning-based BSDE solver using weak expansions," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Gonon, 2024. "Deep neural network expressivity for optimal stopping problems," Finance and Stochastics, Springer, vol. 28(3), pages 865-910, July.
    2. Li, Wei & Zhang, Ying & Huang, Dongmei & Rajic, Vesna, 2022. "Study on stationary probability density of a stochastic tumor-immune model with simulation by ANN algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    4. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    5. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    6. Yoshifumi Tsuchida, 2023. "Control Variate Method for Deep BSDE Solver Using Weak Approximation," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 273-296, June.
    7. Akihiko Takahashi & Toshihiro Yamada, 2023. "Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus," CIRJE F-Series CIRJE-F-1212, CIRJE, Faculty of Economics, University of Tokyo.
    8. Ariel Neufeld & Philipp Schmocker & Sizhou Wu, 2024. "Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs," Papers 2405.05192, arXiv.org, revised Dec 2024.
    9. Jentzen, Arnulf & Welti, Timo, 2023. "Overall error analysis for the training of deep neural networks via stochastic gradient descent with random initialisation," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    10. Akihiko Takahashi & Toshihiro Yamada, 2023. "Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus (Forthcoming in "Partial Differential Equations and Applications&quo," CARF F-Series CARF-F-560, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    11. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A New Efficient Approximation Scheme for Solving High-Dimensional Semilinear PDEs: Control Variate Method for Deep BSDE Solver," CIRJE F-Series CIRJE-F-1159, CIRJE, Faculty of Economics, University of Tokyo.
    12. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver," CARF F-Series CARF-F-504, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2022.
    13. Maximilien Germain & Mathieu Laurière & Huyên Pham & Xavier Warin, 2022. "DeepSets and their derivative networks for solving symmetric PDEs ," Post-Print hal-03154116, HAL.
    14. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2022. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver (Journal of Computational Physics, published online 19 January 2022)," CARF F-Series CARF-F-532, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Feb 2022.
    15. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver," Papers 2101.09890, arXiv.org, revised Jan 2021.
    16. Fred Espen Benth & Nils Detering & Luca Galimberti, 2022. "Pricing options on flow forwards by neural networks in Hilbert space," Papers 2202.11606, arXiv.org.
    17. Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.07231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.