IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01173053.html
   My bibliography  Save this paper

Integrated models, scenarios and dynamics of climate, land use and common birds

Author

Listed:
  • Jean-Sauveur Ay

    (ECO-PUB - Economie Publique - INRA - Institut National de la Recherche Agronomique - AgroParisTech, CESCO - Centre d'Ecologie et des Sciences de la COnservation - MNHN - Muséum national d'Histoire naturelle - UPMC - Université Pierre et Marie Curie - Paris 6 - CNRS - Centre National de la Recherche Scientifique)

  • Raja Chakir

    (ECO-PUB - Economie Publique - INRA - Institut National de la Recherche Agronomique - AgroParisTech)

  • Luc Doyen

    (CESCO - Centre d'Ecologie et des Sciences de la COnservation - MNHN - Muséum national d'Histoire naturelle - UPMC - Université Pierre et Marie Curie - Paris 6 - CNRS - Centre National de la Recherche Scientifique, GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

  • Frédéric Jiguet

    (CESCO - Centre d'Ecologie et des Sciences de la COnservation - MNHN - Muséum national d'Histoire naturelle - UPMC - Université Pierre et Marie Curie - Paris 6 - CNRS - Centre National de la Recherche Scientifique)

  • Paul Leadley

    (ESE - Ecologie Systématique et Evolution - UP11 - Université Paris-Sud - Paris 11 - AgroParisTech - CNRS - Centre National de la Recherche Scientifique)

Abstract

Reconciling food, fiber and energy production with biodiversity conservation is among the greatest challenges of the century, especially in the face of climate change. Model-based scenarios linking climate, land use and biodiversity can be exceptionally useful tools for decision support in this context. We present a modeling framework that links climate projections, private land use decisions including farming, forest and urban uses and the abundances of common birds as an indicator of biodiversity. Our major innovation is to simultaneously integrate the direct impacts of climate change and land use on biodiversity as well as indirect impacts mediated by climate change effects on land use, all at very fine spatial resolution. In addition, our framework can be used to evaluate incentive-based conservation policies in terms of land use and biodiversity over several decades. The results for our case study in France indicate that the projected effects of climate change dominate the effects of land use on bird abundances. As a conservation policy, implementing a spatially uniform payment for pastures has a positive effect in relatively few locations and only on the least vulnerable bird species.

Suggested Citation

  • Jean-Sauveur Ay & Raja Chakir & Luc Doyen & Frédéric Jiguet & Paul Leadley, 2014. "Integrated models, scenarios and dynamics of climate, land use and common birds," Post-Print hal-01173053, HAL.
  • Handle: RePEc:hal:journl:hal-01173053
    DOI: 10.1007/s10584-014-1202-4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raja Chakir & Olivier Parent, 2009. "Determinants of land use changes: A spatial multinomial probit approach," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 327-344, June.
    2. Ruben N. Lubowski & Andrew J. Plantinga & Robert N. Stavins, 2008. "What Drives Land-Use Change in the United States? A National Analysis of Landowner Decisions," Land Economics, University of Wisconsin Press, vol. 84(4), pages 529-550.
    3. Robert Mendelsohn & Ariel Dinar, 2009. "Climate Change and Agriculture," Books, Edward Elgar Publishing, number 12990.
    4. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    5. Lewis, David J. & Plantinga, Andrew J. & Nelson, Erik & Polasky, Stephen, 2011. "The efficiency of voluntary incentive policies for preventing biodiversity loss," Resource and Energy Economics, Elsevier, vol. 33(1), pages 192-211, January.
    6. K, Sudarkodi & K, Sathyabama, 2011. "The Impact Of Climate Change On Agriculture," MPRA Paper 29784, University Library of Munich, Germany.
    7. Chakir, Raja & Le Gallo, Julie, 2013. "Predicting land use allocation in France: A spatial panel data analysis," Ecological Economics, Elsevier, vol. 92(C), pages 114-125.
    8. Peter Verburg & Bas Eickhout & Hans Meijl, 2008. "A multi-scale, multi-model approach for analyzing the future dynamics of European land use," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 57-77, March.
    9. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    10. Mouysset, L. & Doyen, L. & Jiguet, F. & Allaire, G. & Leger, F., 2011. "Bio economic modeling for a sustainable management of biodiversity in agricultural lands," Ecological Economics, Elsevier, vol. 70(4), pages 617-626, February.
    11. Andrew J. Plantinga, 1996. "The Effect of Agricultural Policies on Land Use and Environmental Quality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1082-1091.
    12. Richard W. Katz & Peter F. Craigmile & Peter Guttorp & Murali Haran & Bruno Sansó & Michael L. Stein, 2013. "Uncertainty analysis in climate change assessments," Nature Climate Change, Nature, vol. 3(9), pages 769-771, September.
    13. Lauriane Mouysset & Luc Doyen & Frédéric Jiguet, 2014. "From Population Viability Analysis to Coviability of Farmland Biodiversity and Agriculture," Post-Print hal-01565883, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Sauveur Ay & Raja Chakir & Julie Le Gallo, 2014. "The effects of scale, space and time on the predictive accuracy of land use models," Working Papers 2014/02, INRA, Economie Publique.
    2. Mouysset, L. & Rais Assa, C. & Ay, J-S. & Jiguet, F. & Lorrilière, R. & Doyen, L., 2019. "Bioeconomic impacts of agroforestry policies in France," Land Use Policy, Elsevier, vol. 85(C), pages 239-248.
    3. Gerling, Charlotte & Wätzold, Frank, 2019. "Evaluating policy instruments for the conservation of biodiversity in a changing climate," MPRA Paper 95512, University Library of Munich, Germany.
    4. Simone Pieralli, 2019. "Bumper crop or dearth: An economic methodology to identify the disruptive effects of climatic variables on French agriculture [Récolte exceptionnelle ou pénurie : une méthodologie économique pour i," Working Papers hal-02786610, HAL.
    5. Ny Andraina Andriamanantena & Charly Gaufreteau & Jean-Sauveur Ay & Luc Doyen, 2022. "Climate-dependent scenarios of land use for biodiversity and ecosystem services in the New Aquitaine region," Post-Print halshs-03913031, HAL.
    6. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    7. Chakir, Raja & Lungarska, Anna, 2015. "Agricultural land rents in land use models: a spatial econometric analysis," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212641, European Association of Agricultural Economists.
    8. Li, Yijia & Khanna, Madhu & Miao, Ruiqing, 2018. "Determinants of Grassland Bird Population in the United States: The Role of Land-Use Change and Pesticides Use," 2018 Annual Meeting, August 5-7, Washington, D.C. 274289, Agricultural and Applied Economics Association.
    9. Tiphaine Guillet & Lauriane Mouysset, 2022. "Productive versus environmental objectives of agricultural policies dealing with climate change: a French case study," Post-Print hal-03919917, HAL.
    10. Basak Bayramoglu & Raja CHAKIR & Anna LUNGARSKA, 2016. "Land Use and Freshwater Ecosystems in France," EcoMod2016 9420, EcoMod.
    11. Ny Andraina Andriamanantena & Charly Gaufreteau & Jean-Sauveur Ay & Luc Doyen, 2021. "Ecological-economic scenarios of land-use for biodiversity and ecosystem services in the New Aquitaine region," Bordeaux Economics Working Papers 2021-18, Bordeaux School of Economics (BSE).
    12. Lauriane MOUYSSET & Claire RAIS ASSA & Jean-Sauveur AY & Frédéric JIGUET & Romain LORRILIERE & Luc DOYEN, 2017. "A bio-economic analysis for land-uses and biodiversity in metropolitan France," Cahiers du GREThA (2007-2019) 2017-05, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    2. Jean-Sauveur Ay & Raja Chakir & Julie Le Gallo, 2014. "The effects of scale, space and time on the predictive accuracy of land use models," Working Papers 2014/02, INRA, Economie Publique.
    3. Chakir, Raja & Lungarska, Anna, 2015. "Agricultural land rents in land use models: a spatial econometric analysis," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212641, European Association of Agricultural Economists.
    4. Ny Andraina Andriamanantena & Charly Gaufreteau & Jean-Sauveur Ay & Luc Doyen, 2021. "Ecological-economic scenarios of land-use for biodiversity and ecosystem services in the New Aquitaine region," Bordeaux Economics Working Papers 2021-18, Bordeaux School of Economics (BSE).
    5. Carrión-Flores, Carmen E. & Flores-Lagunes, Alfonso & Guci, Ledia, 2018. "An estimator for discrete-choice models with spatial lag dependence using large samples, with an application to land-use conversions," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 77-93.
    6. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    7. Chonabayashi, Shun, 2014. "Accounting for Land Use Adaptation to Climate Change Impacts on US Agriculture," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170710, Agricultural and Applied Economics Association.
    8. Claassen, Roger & Carriazo, Fernando & Cooper, Joseph C. & Hellerstein, Daniel & Ueda, Kohei, 2011. "Grassland to Cropland Conversion in the Northern Plains: The Role of Crop Insurance, Commodity, and Disaster Programs," Economic Research Report 262239, United States Department of Agriculture, Economic Research Service.
    9. Raja Chakir & Thibault Laurent & Anne Ruiz-Gazen & Christine Thomas-Agnan & Céline Vignes, 2017. "Prédiction de l’usage des sols sur un zonage régulier à différentes résolutions et à partir de covariables facilement accessibles," Revue économique, Presses de Sciences-Po, vol. 68(3), pages 435-469.
    10. Carlo Fezzi & Ian Bateman & Tom Askew & Paul Munday & Unai Pascual & Antara Sen & Amii Harwood, 2014. "Valuing Provisioning Ecosystem Services in Agriculture: The Impact of Climate Change on Food Production in the United Kingdom," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(2), pages 197-214, February.
    11. Ny Andraina Andriamanantena & Charly Gaufreteau & Jean-Sauveur Ay & Luc Doyen, 2022. "Climate-dependent scenarios of land use for biodiversity and ecosystem services in the New Aquitaine region," Post-Print halshs-03913031, HAL.
    12. Zhao, Xin & Calvin, Katherine & Wise, Marshall, 2020. "The critical role of conversion cost and comparative advantage in modeling agricultural land use change," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304204, Agricultural and Applied Economics Association.
    13. Sandler, Austin M. & Rashford, Benjamin S., 2018. "Misclassification error in satellite imagery data: Implications for empirical land-use models," Land Use Policy, Elsevier, vol. 75(C), pages 530-537.
    14. D. M. Lambert & C. N. Boyer & L. He, 2016. "Spatial-temporal heteroskedastic robust covariance estimation for Markov transition probabilities: an application examining land use change," Letters in Spatial and Resource Sciences, Springer, vol. 9(3), pages 353-362, October.
    15. Chakir, Raja & Le Gallo, Julie, 2013. "Predicting land use allocation in France: A spatial panel data analysis," Ecological Economics, Elsevier, vol. 92(C), pages 114-125.
    16. Xin Zhao & Katherine V. Calvin & Marshall A. Wise, 2020. "The Critical Role Of Conversion Cost And Comparative Advantage In Modeling Agricultural Land Use Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-44, February.
    17. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    18. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    19. Seo, S. Niggol & Mendelsohn, Robert, 2008. "An analysis of crop choice: Adapting to climate change in South American farms," Ecological Economics, Elsevier, vol. 67(1), pages 109-116, August.
    20. Seo, Sungno Niggol & Mendelsohn, Robert, 2007. "Climate change adaptation in Africa : a microeconomic analysis of livestock choice," Policy Research Working Paper Series 4277, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01173053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.