IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00384398.html
   My bibliography  Save this paper

A new algorithm for the loss distribution function with applications to Operational Risk Management

Author

Listed:
  • Dominique Guegan

    () (CES - Centre d'économie de la Sorbonne - UP1 - Université Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics)

  • Bertrand Hassani

    () (CES - Centre d'économie de la Sorbonne - UP1 - Université Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

Operational risks inside banks and insurance companies is currently an important task. The computation of a risk measure associated to these risks lies on the knowledge of the so-called Loss Distribution Function. Traditionally this distribution function is computed via the Panjer algorithm which is an iterative algorithm. In this paper, we propose an adaptation of this last algorithm in order to improve the computation of convolutions between Panjer class distributions and continuous distributions. This new approach permits to reduce drastically the variance of the estimated VAR associated to the operational risks.

Suggested Citation

  • Dominique Guegan & Bertrand Hassani, 2009. "A new algorithm for the loss distribution function with applications to Operational Risk Management," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00384398, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00384398
    Note: View the original document on HAL open archive server: https://halshs.archives-ouvertes.fr/halshs-00384398v2
    as

    Download full text from publisher

    File URL: https://halshs.archives-ouvertes.fr/halshs-00384398v2/document
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark Craddock & David Heath & Eckhard Platen, 1999. "Numerical Inversion of Laplace Transforms: A Survey of Techniques with Applications to Derivative Pricing," Research Paper Series 27, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    3. Grübel, Rudolf & Hermesmeier, Renate, 1999. "Computation of Compound Distributions I: Aliasing Errors and Exponential Tilting," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 29(02), pages 197-214, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    convolution; Risques opérationnels; algorithme de Panjer; intégration numérique; Operational risk; Panjer algorithm; Kernel; numerical integration; convolution.;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00384398. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.