IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0904.0830.html
   My bibliography  Save this paper

Computing Tails of Compound Distributions Using Direct Numerical Integration

Author

Listed:
  • Xiaolin Luo
  • Pavel V. Shevchenko

Abstract

An efficient adaptive direct numerical integration (DNI) algorithm is developed for computing high quantiles and conditional Value at Risk (CVaR) of compound distributions using characteristic functions. A key innovation of the numerical scheme is an effective tail integration approximation that reduces the truncation errors significantly with little extra effort. High precision results of the 0.999 quantile and CVaR were obtained for compound losses with heavy tails and a very wide range of loss frequencies using the DNI, Fast Fourier Transform (FFT) and Monte Carlo (MC) methods. These results, particularly relevant to operational risk modelling, can serve as benchmarks for comparing different numerical methods. We found that the adaptive DNI can achieve high accuracy with relatively coarse grids. It is much faster than MC and competitive with FFT in computing high quantiles and CVaR of compound distributions in the case of moderate to high frequencies and heavy tails.

Suggested Citation

  • Xiaolin Luo & Pavel V. Shevchenko, 2009. "Computing Tails of Compound Distributions Using Direct Numerical Integration," Papers 0904.0830, arXiv.org, revised Feb 2010.
  • Handle: RePEc:arx:papers:0904.0830
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0904.0830
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Shephard, N.G., 1991. "From Characteristic Function to Distribution Function: A Simple Framework for the Theory," Econometric Theory, Cambridge University Press, vol. 7(04), pages 519-529, December.
    2. Grübel, Rudolf & Hermesmeier, Renate, 1999. "Computation of Compound Distributions I: Aliasing Errors and Exponential Tilting," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 29(02), pages 197-214, November.
    3. Mark Craddock & David Heath & Eckhard Platen, 1999. "Numerical Inversion of Laplace Transforms: A Survey of Techniques with Applications to Derivative Pricing," Research Paper Series 27, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Panjer, Harry H. & Willmot, Gordon E., 1986. "Computational aspects of recursive evaluation of compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 5(1), pages 113-116, January.
    5. S. Illeris & G. Akehurst, 2002. "Introduction," The Service Industries Journal, Taylor & Francis Journals, vol. 22(1), pages 1-3, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    2. Dominique Guegan & Bertrand Hassani, 2009. "A modified Panjer algorithm for operational risk capital calculations," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00443846, HAL.
    3. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.
    4. Pavel V. Shevchenko & Grigory Temnov, 2009. "Modeling operational risk data reported above a time-varying threshold," Papers 0904.4075, arXiv.org, revised Jul 2009.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0904.0830. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.