IDEAS home Printed from
   My bibliography  Save this paper

Market Efficiency, Roughness and Long Memory in the PSI20 Index Returns: Wavelet and Entropy Analysis


  • Rui Pascoal

    (Faculty of Economics, University of Coimbra, Portugal)

  • Ana Margarida Monteiro

    () (GEMF/Faculty of Economics, University of Coimbra, Portugal)


In this study, features of financial returns of PSI20 index, related to market efficiency, are captured using wavelet and entropy based techniques. This characterization includes the following points. First, the detection of long memory, associated to low frequencies, and a global measure of the time series: the Hurst exponent estimated by several methods including wavelets. Second, the degree of roughness, or regularity variation, associated to the Hölder exponent, fractal dimension and estimation based on multifractal spectrum. Finally, the degree of the unpredictability of the series, estimated by approximate entropy. These aspects may also be studied through the concepts of non-extensive entropy and distribution using, for instance, the Tsallis q-triplet. They allow to study the existence of efficiency in the nancial market. On the other hand, the study of local roughness is performed by considering wavelet leaders based entropy. In fact, the wavelet coefficients are computed from a multiresolution analysis, and the wavelet leaders are defined by the local suprema of these coefficients, near the point we are considering. The resulting entropy is more accurate in that detection than the Hölder exponent. These procedures enhance the capacity to identify the occurrence of financial crashes.

Suggested Citation

  • Rui Pascoal & Ana Margarida Monteiro, 2013. "Market Efficiency, Roughness and Long Memory in the PSI20 Index Returns: Wavelet and Entropy Analysis," GEMF Working Papers 2013-27, GEMF, Faculty of Economics, University of Coimbra.
  • Handle: RePEc:gmf:wpaper:2013-27.

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Tsallis, Constantino, 2004. "Dynamical scenario for nonextensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 1-10.
    2. Cortines, A.A.G. & Riera, R., 2007. "Non-extensive behavior of a stock market index at microscopic time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 181-192.
    3. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    4. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    5. Ferri, G.L. & Reynoso Savio, M.F. & Plastino, A., 2010. "Tsallis’ q-triplet and the ozone layer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1829-1833.
    6. S. M.D. Queirós & L. G. Moyano & J. de Souza & C. Tsallis, 2007. "A nonextensive approach to the dynamics of financial observables," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 161-167, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    efficiency; long memory; fractal dimension; unpredictability; q-triplet; entropy; wavelets.;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gmf:wpaper:2013-27.. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Seiça). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.