IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/15912.html
   My bibliography  Save this paper

The Environmental Gains of Remanufacturing: Evidence from the Computer and Mobile Industry

Author

Listed:
  • Quariguasi Frota Neto, J.
  • Bloemhof-Ruwaard, J.M.

Abstract

Remanufacturing has long been perceived as an environmentally-friendly initiative. The question of how remanufacturing moderates the relation between environmental impact and economic returns is still unanswered, however. In this paper, we focus our attention on the electronics industry. In particular, we take a close look at remanufacturing within the mobile and personal computers industries. We analyze whether remanufacturing for such products substantially mitigates the energy used in the life-cycle of these products, or whether as in most electrical equipments, it can only marginally contribute to such reduction. Using both process-based and economic input-output data, we show that remanufacturing significantly reduces total energy consumption. Furthermore, we test the ubiquitous hypothesis that the market of remanufactured products is composed by products that have been downgraded and are therefore sold for prices below the average price of the new equipments. Using data from 9,900 real transactions obtained from eBay, we show that this assumption is true for personal computers, but not for mobiles. More importantly, despite the fact that remanufactured products may suffer downgrading, and that consumers therefore command a high discount for them, the economic output per energy unit used is still higher for remanufactured products. We thus conclude that remanufacturing for these two products is not only environmentally friendly, but also eco-efficient.

Suggested Citation

  • Quariguasi Frota Neto, J. & Bloemhof-Ruwaard, J.M., 2009. "The Environmental Gains of Remanufacturing: Evidence from the Computer and Mobile Industry," ERIM Report Series Research in Management ERS-2009-024-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:15912
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/15912/ERS-2009-024-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    2. Sibylle D. Frey & David J. Harrison & Eric H. Billett, 2006. "Ecological Footprint Analysis Applied to Mobile Phones," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 199-216, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Nan Wang & Hong-Xuyen Thi Ho & Shih-Hsiung Luo & Tsung-Fu Lin, 2017. "An Integrated Approach to Evaluating and Selecting Green Logistics Providers for Sustainable Development," Sustainability, MDPI, vol. 9(2), pages 1-21, February.
    2. Xiaoxiao Chang & Guangye Xu & Qian Wang & Yongguang Zhong, 2020. "A Game Theoretic Approach for Eco-Design and Remanufacturing Considering Take-Back Policy," Sustainability, MDPI, vol. 12(17), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mika Kortelainen & Timo Kuosmanen, 2007. "Eco-efficiency analysis of consumer durables using absolute shadow prices," Journal of Productivity Analysis, Springer, vol. 28(1), pages 57-69, October.
    2. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    3. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    4. Cha, Kyounghoon & Lim, Songtak & Hur, Tak, 2008. "Eco-efficiency approach for global warming in the context of Kyoto Mechanism," Ecological Economics, Elsevier, vol. 67(2), pages 274-280, September.
    5. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    6. Marileena Koskela & Jarmo Vehmas, 2012. "Defining Eco‐efficiency: A Case Study on the Finnish Forest Industry," Business Strategy and the Environment, Wiley Blackwell, vol. 21(8), pages 546-566, December.
    7. Eder, Andreas, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Discussion Papers DP-75-2021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    8. Haiyang Shang & Fang Su & Serhat Yüksel & Hasan Dinçer, 2021. "Identifying the Strategic Priorities of the Technical Factors for the Sustainable Low Carbon Industry Based on Macroeconomic Conditions," SAGE Open, , vol. 11(2), pages 21582440211, May.
    9. Silva, Elvira & Magalhães, Manuela, 2023. "Environmental efficiency, irreversibility and the shadow price of emissions," European Journal of Operational Research, Elsevier, vol. 306(2), pages 955-967.
    10. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    11. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    12. Alfredsson, Eva & Månsson, Jonas & Vikström, Peter, 2016. "Internalising external environmental effects in efficiency analysis," Economic Analysis and Policy, Elsevier, vol. 51(C), pages 22-31.
    13. Zuoren Sun & Chao An & Huachen Sun, 2018. "Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    14. Kuosmanen, Timo & Kortelainen, Mika, 2007. "Valuing environmental factors in cost-benefit analysis using data envelopment analysis," Ecological Economics, Elsevier, vol. 62(1), pages 56-65, April.
    15. Kounetas, Konstantinos & Polemis, Michael & Tzeremes, Nickolaos, 2019. "An alternative probabilistic frontier analysis to the measurement of eco-efficiency," MPRA Paper 93686, University Library of Munich, Germany.
    16. Song, Malin & Zhang, Jie & Wang, Shuhong, 2015. "Review of the network environmental efficiencies of listed petroleum enterprises in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 65-71.
    17. H. K. Millington & J. E. Lovell & C. A. K. Lovell, 2013. "Using Fieldwork, GIS and DEA to Guide Management of Urban Stream Health," CEPA Working Papers Series WP072013, School of Economics, University of Queensland, Australia.
    18. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    19. George Halkos & Nickolaos Tzeremes & Panayiotis Tzeremes, 2015. "A nonparametric approach for evaluating long-term energy policy scenarios: an application to the Greek energy system," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-14, December.
    20. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).

    More about this item

    Keywords

    closed-loop supply chains; eco-efficiency; remanufacturing; sustainability;
    All these keywords.

    JEL classification:

    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:15912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.