IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/15912.html

The Environmental Gains of Remanufacturing: Evidence from the Computer and Mobile Industry

Author

Listed:
  • Quariguasi Frota Neto, J.
  • Bloemhof-Ruwaard, J.M.

Abstract

Remanufacturing has long been perceived as an environmentally-friendly initiative. The question of how remanufacturing moderates the relation between environmental impact and economic returns is still unanswered, however. In this paper, we focus our attention on the electronics industry. In particular, we take a close look at remanufacturing within the mobile and personal computers industries. We analyze whether remanufacturing for such products substantially mitigates the energy used in the life-cycle of these products, or whether as in most electrical equipments, it can only marginally contribute to such reduction. Using both process-based and economic input-output data, we show that remanufacturing significantly reduces total energy consumption. Furthermore, we test the ubiquitous hypothesis that the market of remanufactured products is composed by products that have been downgraded and are therefore sold for prices below the average price of the new equipments. Using data from 9,900 real transactions obtained from eBay, we show that this assumption is true for personal computers, but not for mobiles. More importantly, despite the fact that remanufactured products may suffer downgrading, and that consumers therefore command a high discount for them, the economic output per energy unit used is still higher for remanufactured products. We thus conclude that remanufacturing for these two products is not only environmentally friendly, but also eco-efficient.

Suggested Citation

  • Quariguasi Frota Neto, J. & Bloemhof-Ruwaard, J.M., 2009. "The Environmental Gains of Remanufacturing: Evidence from the Computer and Mobile Industry," ERIM Report Series Research in Management ERS-2009-024-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:15912
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/15912/ERS-2009-024-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sibylle D. Frey & David J. Harrison & Eric H. Billett, 2006. "Ecological Footprint Analysis Applied to Mobile Phones," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 199-216, January.
    2. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Nan Wang & Hong-Xuyen Thi Ho & Shih-Hsiung Luo & Tsung-Fu Lin, 2017. "An Integrated Approach to Evaluating and Selecting Green Logistics Providers for Sustainable Development," Sustainability, MDPI, vol. 9(2), pages 1-21, February.
    2. Xiaoxiao Chang & Guangye Xu & Qian Wang & Yongguang Zhong, 2020. "A Game Theoretic Approach for Eco-Design and Remanufacturing Considering Take-Back Policy," Sustainability, MDPI, vol. 12(17), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad, Md A.S. & Ancev, Tihomir, 2010. "Using ecological indices to measure economic and environmental performance of irrigated agriculture," Ecological Economics, Elsevier, vol. 69(8), pages 1731-1739, June.
    2. Mika Kortelainen & Timo Kuosmanen, 2007. "Eco-efficiency analysis of consumer durables using absolute shadow prices," Journal of Productivity Analysis, Springer, vol. 28(1), pages 57-69, October.
    3. Minghong Peng & Xiaolong Zhang & Ji Luo & Dingdi Jize & Pengju Li & Haijun Wang & Tianhui Xie & Hu Li & Yuanjie Deng, 2025. "Spatial Patterns and Drivers of China’s Agricultural Ecological Efficiency: A Super-Efficiency EBM–GeoDetector Approach," Sustainability, MDPI, vol. 17(6), pages 1-29, March.
    4. Huang, Chin-wei & Chiu, Yung-ho & Fang, Wei-ta & Shen, Neng, 2014. "Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach," Energy Policy, Elsevier, vol. 74(C), pages 547-556.
    5. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Examining eco-efficiency convergence of European Industries.The existence of technological spillovers within a metafrontier framework," MPRA Paper 94286, University Library of Munich, Germany.
    6. Elahi, Ehsan & Khalid, Zainab & Weijun, Cui & Zhang, Huiming, 2020. "The public policy of agricultural land allotment to agrarians and its impact on crop productivity in Punjab province of Pakistan," Land Use Policy, Elsevier, vol. 90(C).
    7. Kuosmanen, Timo & Bijsterbosch, Neil & Dellink, Rob, 2009. "Environmental cost-benefit analysis of alternative timing strategies in greenhouse gas abatement: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(6), pages 1633-1642, April.
    8. Mariam Camarero & Juana Castillo & Andrés Picazo-Tadeo & Cecilio Tamarit, 2013. "Eco-Efficiency and Convergence in OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 87-106, May.
    9. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    10. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    11. Cha, Kyounghoon & Lim, Songtak & Hur, Tak, 2008. "Eco-efficiency approach for global warming in the context of Kyoto Mechanism," Ecological Economics, Elsevier, vol. 67(2), pages 274-280, September.
    12. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    13. Marileena Koskela & Jarmo Vehmas, 2012. "Defining Eco‐efficiency: A Case Study on the Finnish Forest Industry," Business Strategy and the Environment, Wiley Blackwell, vol. 21(8), pages 546-566, December.
    14. K Hervé Dakpo, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers SMART 16-06, INRAE UMR SMART.
    15. Staniszewski Jakub & Matuszczak Anna, 2023. "Environmentally Adjusted Analysis of Agricultural Efficiency: A Systematic Literature Review of Frontier Approaches," Zagadnienia Ekonomiki Rolnej / Problems of Agricultural Economics, Sciendo, vol. 374(1), pages 20-41, March.
    16. David C. Broadstock & Shunsuke Managi & Roman Matousek & Nickolaos G. Tzeremes, 2019. "Does doing “good” always translate into doing “well”? An eco‐efficiency perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 28(6), pages 1199-1217, September.
    17. Shuaiyu Yao & Mengmeng Chen & Dmitri Muravev & Wendi Ouyang, 2021. "Eco-Efficiency Analysis for the Russian Cities along the Northern Sea Route: A Data Envelopment Analysis Approach Using an Epsilon-Based Measure Model," IJERPH, MDPI, vol. 18(11), pages 1-16, June.
    18. Christian Grovermann & Tesfamicheal Wossen & Adrian Muller & Karin Nichterlein, 2019. "Eco-efficiency and agricultural innovation systems in developing countries: Evidence from macro-level analysis," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
    19. Eder, Andreas, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Discussion Papers DP-75-2021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    20. Rashidi, Kamran & Farzipoor Saen, Reza, 2015. "Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement," Energy Economics, Elsevier, vol. 50(C), pages 18-26.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:15912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub The email address of this maintainer does not seem to be valid anymore. Please ask RePub to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.