IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/539.html
   My bibliography  Save this paper

A decomposition approach to a stochastic model for supply-and-return network design

Author

Listed:
  • Listes, O.L.

Abstract

This paper presents a generic stochastic model for the design of networks comprising both supply and return channels, organized in a closed loop system. Such situations are typical for manufacturing/re-manufacturing type of systems in reverse logistics. The model accounts for a number of alternative scenarios, which may be constructed based on critical levels of design parameters such as demand or returns. We propose a decomposition approach for this model based on the branch and cut procedure known as the integer L-shaped method. Computational results show a consistent performance efficiency of the method for the addressed location problem. The stochastic solutions obtained in a numerical setting generate a significant improvement in terms of average performance over the individual scenario solutions. A solution methodology as presented here can contribute to overcoming notorious challenges of stochastic network design models, such as increased problem sizes and computational difficulty.

Suggested Citation

  • Listes, O.L., 2002. "A decomposition approach to a stochastic model for supply-and-return network design," Econometric Institute Research Papers EI 2002-43, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:539
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/539/feweco20021204140931.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Listes, O.L. & Dekker, R., 2001. "Stochastic approaches for product recovery network design: a case study," Econometric Institute Research Papers EI 2001-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Barros, A. I. & Dekker, R. & Scholten, V., 1998. "A two-level network for recycling sand: A case study," European Journal of Operational Research, Elsevier, vol. 110(2), pages 199-214, October.
    3. Gilbert Laporte & François V. Louveaux & Luc van Hamme, 1994. "Exact Solution to a Location Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 28(2), pages 95-103, May.
    4. Stein W. Wallace & Stein-Erik Fleten, 2002. "Stochastic programming in energy," GE, Growth, Math methods 0201001, University Library of Munich, Germany, revised 13 Nov 2003.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    2. Vahab Vahdat & Mohammad Ali Vahdatzad, 2017. "Accelerated Benders’ Decomposition for Integrated Forward/Reverse Logistics Network Design under Uncertainty," Logistics, MDPI, vol. 1(2), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    3. Salema, Maria Isabel Gomes & Barbosa-Povoa, Ana Paula & Novais, Augusto Q., 2007. "An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1063-1077, June.
    4. Listes, Ovidiu & Dekker, Rommert, 2005. "A stochastic approach to a case study for product recovery network design," European Journal of Operational Research, Elsevier, vol. 160(1), pages 268-287, January.
    5. Listes, O.L. & Dekker, R., 2001. "Stochastic approaches for product recovery network design: a case study," Econometric Institute Research Papers EI 2001-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Fleischmann, M., 2001. "Reverse Logistics Network Structures and Design," ERIM Report Series Research in Management ERS-2001-52-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Choudhary, Alok & Sarkar, Sagar & Settur, Srikar & Tiwari, M.K., 2015. "A carbon market sensitive optimization model for integrated forward–reverse logistics," International Journal of Production Economics, Elsevier, vol. 164(C), pages 433-444.
    8. Wang, Ziping & Yao, Dong-Qing & Huang, Peiqing, 2007. "A new location-inventory policy with reverse logistics applied to B2C e-markets of China," International Journal of Production Economics, Elsevier, vol. 107(2), pages 350-363, June.
    9. Diabat, Ali & Kannan, Devika & Kaliyan, Mathiyazhagan & Svetinovic, Davor, 2013. "An optimization model for product returns using genetic algorithms and artificial immune system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 156-169.
    10. de Brito, M.P. & Flapper, S.D.P. & Dekker, R., 2002. "Reverse logistics," Econometric Institute Research Papers EI 2002-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    12. E. Nasakkala & J. Keppo, 2008. "Hydropower with Financial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 503-529.
    13. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    14. Madadi, AliReza & Kurz, Mary E. & Mason, Scott J. & Taaffe, Kevin M., 2014. "Supply chain design under quality disruptions and tainted materials delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 105-123.
    15. Rahman, Shams & Subramanian, Nachiappan, 2012. "Factors for implementing end-of-life computer recycling operations in reverse supply chains," International Journal of Production Economics, Elsevier, vol. 140(1), pages 239-248.
    16. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    17. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    18. Correia, Isabel & Melo, Teresa, 2019. "Dynamic facility location problem with modular capacity adjustments under uncertainty," Technical Reports on Logistics of the Saarland Business School 17, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    19. Miguel A. Lejeune & François Margot, 2016. "Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities," Operations Research, INFORMS, vol. 64(4), pages 939-957, August.
    20. Hong, I-Hsuan & Ammons, Jane C. & Realff, Matthew J., 2008. "Decentralized decision-making and protocol design for recycled material flows," International Journal of Production Economics, Elsevier, vol. 116(2), pages 325-337, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.