IDEAS home Printed from https://ideas.repec.org/p/ecl/corcae/03-09.html
   My bibliography  Save this paper

Cantor Type Invariant Distributions in the Theory of Optimal Growth under Uncertainty

Author

Listed:
  • Mitra, Tapan

    (Cornell U)

  • Privileggi, Fabio

    (Universita degli Studi del Piemonte Orientale)

Abstract

We study a one-sector stochastic optimal growth model, where the utility function is iso-elastic and the production function is of the Cobb-Douglas form. Production is affected by a multiplicative shock taking one of two values. We provide sufficient conditions on the parameters of the model under which the invariant distribution of the stochastic process of optimal output levels is of the Cantor type.

Suggested Citation

  • Mitra, Tapan & Privileggi, Fabio, 2003. "Cantor Type Invariant Distributions in the Theory of Optimal Growth under Uncertainty," Working Papers 03-09, Cornell University, Center for Analytic Economics.
  • Handle: RePEc:ecl:corcae:03-09
    as

    Download full text from publisher

    File URL: https://cae.economics.cornell.edu/MPCantorJune2003.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Araujo, A, 1991. "The Once but Not Twice Differentiability of the Policy Function," Econometrica, Econometric Society, vol. 59(5), pages 1383-1393, September.
    2. Mirman, Leonard J. & Zilcha, Itzhak, 1975. "On optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 11(3), pages 329-339, December.
    3. Santos, Manuel S, 1991. "Smoothness of the Policy Function in Discrete Time Economic Models," Econometrica, Econometric Society, vol. 59(5), pages 1365-1382, September.
    4. Tapan Mitra & Luigi Montrucchio & Fabio Privileggi, 2003. "The nature of the steady state in models of optimal growth under uncertainty," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(1), pages 39-71, December.
    5. Montrucchio, Luigi, 1987. "Lipschitz continuous policy functions for strongly concave optimization problems," Journal of Mathematical Economics, Elsevier, vol. 16(3), pages 259-273, June.
    6. Manuel S. Santos & Jesus Vigo-Aguiar, 1998. "Analysis of a Numerical Dynamic Programming Algorithm Applied to Economic Models," Econometrica, Econometric Society, vol. 66(2), pages 409-426, March.
    7. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
    8. L. Montrucchio & F. Privileggi, 1999. "Fractal steady states instochastic optimal control models," Annals of Operations Research, Springer, vol. 88(0), pages 183-197, January.
    9. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1982. "Characterization of optimal plans for stochastic dynamic programs," Journal of Economic Theory, Elsevier, vol. 28(2), pages 221-234, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guido Cozzi & Fabio Privileggi, 2009. "The fractal nature of inequality in a fast growing world: new version," Working Papers 2009_30, Business School - Economics, University of Glasgow.
    2. Mitra, Tapan & Privileggi, Fabio, 2005. "Cantor Type Attractors in Stochastic Growth Models," POLIS Working Papers 43, Institute of Public Policy and Public Choice - POLIS.
    3. La Torre, Davide & Marsiglio, Simone & Mendivil, Franklin & Privileggi, Fabio, 2016. "Fractal Attractors and Singular Invariant Measures in Two-Sector Growth Models with Random Factor Shares," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201620, University of Turin.
    4. La Torre, Davide & Marsiglio, Simone & Privileggi, Fabio, 2011. "Fractals and Self-Similarity in Economics: the Case of a Stochastic Two-Sector Growth Model," POLIS Working Papers 157, Institute of Public Policy and Public Choice - POLIS.
    5. Guido Cozzi & Fabio Privileggi, 2007. "The Fractal Nature of Inequality in a Fast Growing World," Working Papers 2007_45, Business School - Economics, University of Glasgow.
    6. Davide La Torre & Simone, Marsiglio & Mendivil, Franklin & Privileggi, Fabio, 2015. "Self-Similar Measures in Multi-Sector Endogenous Growth Models," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201509, University of Turin.
    7. Olson, Lars J. & Roy, Santanu, 2005. "Theory of Stochastic Optimal Economic Growth," Working Papers 28601, University of Maryland, Department of Agricultural and Resource Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:corcae:03-09. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/cacorus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.