IDEAS home Printed from https://ideas.repec.org/p/deg/conpap/c016_055.html
   My bibliography  Save this paper

Strategically Stable Technological Alliance

Author

Listed:
  • Nikolai V. Kolabutin
  • Nikolay A. Zenkevich

Abstract

There are two conditions that are important to investigate the stability problem when considering the long-term cooperative agreements: the dynamic stability (time consistency), and strategic stability. This paper presents the results based on the profit distribution procedure (PRP), which implement a model of stable cooperation. The paper also shows the relationship between the dynamic and strategic stability of cooperative agreement and the numerical results showing the influence of parameters on the character of participants’ development.

Suggested Citation

  • Nikolai V. Kolabutin & Nikolay A. Zenkevich, 2011. "Strategically Stable Technological Alliance," DEGIT Conference Papers c016_055, DEGIT, Dynamics, Economic Growth, and International Trade.
  • Handle: RePEc:deg:conpap:c016_055
    as

    Download full text from publisher

    File URL: http://degit.sam.sdu.dk/papers/degit_16/c016_055.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zenkevich, Nikolay A. & Petrosjan, Leon A., 2006. "Time-consistency of cooperative solutions," Working Papers 52, Graduate School of Management, St. Petersburg State University.
    2. Petrosjan, Leon & Zaccour, Georges, 2003. "Time-consistent Shapley value allocation of pollution cost reduction," Journal of Economic Dynamics and Control, Elsevier, vol. 27(3), pages 381-398, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:tiu:tiucen:200880 is not listed on IDEAS
    2. Açıkgöz, Ömer T. & Benchekroun, Hassan, 2017. "Anticipated international environmental agreements," European Economic Review, Elsevier, vol. 92(C), pages 306-336.
    3. Casas, Omar J. & Romera, Rosario, 2011. "The international stock pollutant control: a stochastic formulation with transfers," DES - Working Papers. Statistics and Econometrics. WS ws112217, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Ekaterina Viktorovna Gromova & José Daniel López-Barrientos, 2016. "A Differential Game Model for The Extraction of Nonrenewable Resources with Random Initial Times — The Cooperative and Competitive Cases," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-19, June.
    5. Smala Fanokoa, Pascaux & Telahigue, Issam & Zaccour, Georges, 2011. "Buying cooperation in an asymmetric environmental differential game," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 935-946, June.
    6. Sedakov, Artem & Qiao, Han & Wang, Shouyang, 2021. "A model of river pollution as a dynamic game with network externalities," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1136-1153.
    7. Hassan Benchekroun & Farnaz Taherkhani, 2014. "Adaptation and the Allocation of Pollution Reduction Costs," Dynamic Games and Applications, Springer, vol. 4(1), pages 32-57, March.
    8. Stéphane Gonzalez & Fatma Zahra Rostom, 2019. "Sharing the Global Benefits of Finite Natural Resource Exploitation: A Dynamic Coalitional Stability Perspective," Working Papers 1937, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    9. Benchekroun, Hassan & Ray Chaudhuri, Amrita, 2011. "Environmental policy and stable collusion: The case of a dynamic polluting oligopoly," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 479-490, April.
    10. Calvo, Emilio & Rubio, Santiago J., 2013. "Dynamic Models of International Environmental Agreements: A Differential Game Approach," International Review of Environmental and Resource Economics, now publishers, vol. 6(4), pages 289-339, April.
    11. N. Baris Vardar & Georges Zaccour, 2020. "Exploitation of a Productive Asset in the Presence of Strategic Behavior and Pollution Externalities," Mathematics, MDPI, vol. 8(10), pages 1-28, October.
    12. Anton Bondarev, 2021. "Games Without Winners: Catching-up with Asymmetric Spillovers," Dynamic Games and Applications, Springer, vol. 11(4), pages 670-703, December.
    13. Quigley, John & Walls, Lesley, 2007. "Trading reliability targets within a supply chain using Shapley's value," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1448-1457.
    14. Marrouch, W. & Ray Chaudhuri, A., 2011. "International Environmental Agreements in the Presence of Adaptation," Other publications TiSEM 247443ba-1022-47e0-9900-d, Tilburg University, School of Economics and Management.
    15. Hassan Benchekroun & Amrita Ray Chaudhuri, 2015. "Cleaner Technologies and the Stability of International Environmental Agreements," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 17(6), pages 887-915, December.
    16. Ehud Lehrer & Marco Scarsini, 2013. "On the Core of Dynamic Cooperative Games," Dynamic Games and Applications, Springer, vol. 3(3), pages 359-373, September.
    17. Rubio, Santiago J. & Ulph, Alistair, 2007. "An infinite-horizon model of dynamic membership of international environmental agreements," Journal of Environmental Economics and Management, Elsevier, vol. 54(3), pages 296-310, November.
    18. Javier Frutos & Guiomar Martín-Herrán, 2015. "Does Flexibility Facilitate Sustainability of Cooperation Over Time? A Case Study from Environmental Economics," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 657-677, May.
    19. Hassan Benchekroun & Guiomar Martín-Herrán, 2012. "Farsight and Myopia in a Transboundary Pollution Game," Cahiers de recherche 06-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    20. Petrosyan, Leon A. (ed.) & Zenkevich, Nikolay A. (ed.), 2017. "Contributions to Game Theory and Management (GTM2016), vol. X," Conference Papers 10427, Graduate School of Management, St. Petersburg State University.
    21. Ekaterina Marova & Ekaterina Gromova & Polina Barsuk & Anastasia Shagushina, 2020. "On the Effect of the Absorption Coefficient in a Differential Game of Pollution Control," Mathematics, MDPI, vol. 8(6), pages 1-24, June.

    More about this item

    Keywords

    Differential Game; Coalition; Shapley Value; Dynamic Stability; Strategic Stabilty;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:deg:conpap:c016_055. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/iehhsdk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jan Pedersen (email available below). General contact details of provider: https://edirc.repec.org/data/iehhsdk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.