IDEAS home Printed from
   My bibliography  Save this paper

The Structure of Neutral Monotonic Social Functions



In [6], Guha gave a complete characterization of path independent social decision functions which satisfy the independence of irrelevant alternatives condition, the strong Pareto principle, and UII, i.e., unanimous indifference implies social indifference. These conditions necessarily imply that a path independent social decision function is neutral and monotonic. In this paper, we extend Guha's characterization to the class of neutral monotonic social functions. We show that neutral monotonic social functions and their specializations to social decision functions, path independent social decision functions, and social welfare functions can be uniquely represented as a collection of overlapping simple games, each of which is defined on a nonempty set of concerned individuals. Moreover, each simple game satisfies intersection conditions depending on the number of social alternatives; the number of individuals belonging to the concerned set under consideration; and the collective rationality assumption. We also provide a characterization of neutral, monotonic and anonymous social decision functions, where the number of individuals in society exceeds the (finite) number of social alternatives, that generalizes both the representation theorem of May [10] and the representation theorems of Ferejohn and Grether [5].

Suggested Citation

  • Julian H. Blau & Donald J. Brown, 1978. "The Structure of Neutral Monotonic Social Functions," Cowles Foundation Discussion Papers 485, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:485

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Andreu Mas-Colell & Hugo Sonnenschein, 1972. "General Possibility Theorems for Group Decisions," Review of Economic Studies, Oxford University Press, vol. 39(2), pages 185-192.
    2. Ferejohn, John A. & Grether, David M., 1974. "On a class of rational social decision procedures," Journal of Economic Theory, Elsevier, vol. 8(4), pages 471-482, August.
    3. Kirman, Alan P. & Sondermann, Dieter, 1972. "Arrow's theorem, many agents, and invisible dictators," Journal of Economic Theory, Elsevier, vol. 5(2), pages 267-277, October.
    4. Blau, Julian H & Deb, Rajat, 1977. "Social Decision Functions and the Veto," Econometrica, Econometric Society, vol. 45(4), pages 871-879, May.
    5. J. Craven, 1971. "Majority Voting and Social Choice," Review of Economic Studies, Oxford University Press, vol. 38(2), pages 265-267.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:485. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.