IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws092809.html
   My bibliography  Save this paper

Modelling intra-daily volatility by functional data analysis: an empirical application to the spanish stock market

Author

Listed:
  • Ruiz, Esther
  • Romo, Juan
  • Alva, Kenedy

Abstract

We propose recent functional data analysis techniques to study the intra-daily volatility. In particular, the volatility extraction is based on functional principal components and the volatility prediction on functional AR(1) models. The estimation of the corresponding parameters is carried out using the functional equivalent to OLS. We apply these ideas to the empirical analysis of the IBEX35 returns observed each _ve minutes. We also analyze the performance of the proposed functional AR(1) model to predict the volatility along a given day given the information in previous days for the intra-daily volatility for the firms in the IBEX35 Madrid stocks index

Suggested Citation

  • Ruiz, Esther & Romo, Juan & Alva, Kenedy, 2009. "Modelling intra-daily volatility by functional data analysis: an empirical application to the spanish stock market," DES - Working Papers. Statistics and Econometrics. WS ws092809, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws092809
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/3879/ws092809.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    2. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    3. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    4. Muller, Hans-Georg & Stadtmuller, Ulrich & Yao, Fang, 2006. "Functional Variance Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1007-1018, September.
    5. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
    6. Torben G. Andersen, 2001. "Variance-ratio Statistics and High-frequency Data: Testing for Changes in Intraday Volatility Patterns," Journal of Finance, American Finance Association, vol. 56(1), pages 305-327, February.
    7. Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.
    8. Engle, Robert, 2001. "Financial econometrics - A new discipline with new methods," Journal of Econometrics, Elsevier, vol. 100(1), pages 53-56, January.
    9. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    10. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    11. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    12. Luisa Bisaglia & Silvano Bordignon & Francesco Lisi, 2003. "k -Factor GARMA models for intraday volatility forecasting," Applied Economics Letters, Taylor & Francis Journals, vol. 10(4), pages 251-254.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Market microstructure;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws092809. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.