IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2019-01.html
   My bibliography  Save this paper

The finite sample properties of Sparse M-estimators with Pseudo-Observations

Author

Listed:
  • Benjamin Poignard

    (Osaka University, Graduate School of Engineering Science.)

  • Jean-David Fermanian

    (CREST; ENSAE.)

Abstract

We provide finite sample properties of general regularized statistical criteria in the presence of pseudo-observations. Under the restricted strong convexity assump-tion of the unpenalized loss function and regularity conditions on the penalty, we derive non-asymptotic error bounds on the regularized M-estimator that hold with high probability. This penalized framework with pseudo-observations is then ap-plied to the M-estimation of some usual copula-based models. These theoretical results are supported by an empirical study.

Suggested Citation

  • Benjamin Poignard & Jean-David Fermanian, 2019. "The finite sample properties of Sparse M-estimators with Pseudo-Observations," Working Papers 2019-01, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2019-01
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2019-01.pdf
    File Function: CREST working paper version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hofert, Marius & Pham, David, 2013. "Densities of nested Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 37-52.
    2. Jacob Bien & Robert J. Tibshirani, 2011. "Sparse estimation of a covariance matrix," Biometrika, Biometrika Trust, vol. 98(4), pages 807-820.
    3. Fermanian, Jean-David & Lopez, Olivier, 2018. "Single-index copulas," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 27-55.
    4. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. repec:hum:wpaper:sfb649dp2015-038 is not listed on IDEAS
    8. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    9. Okhrin Ostap & Okhrin Yarema & Schmid Wolfgang, 2013. "Properties of hierarchical Archimedean copulas," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 21-54, March.
    10. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan Uyttendaele, 2018. "On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison," Computational Statistics, Springer, vol. 33(2), pages 1047-1070, June.
    2. Vettori, Sabrina & Huser, Raphael & Segers, Johan & Genton, Marc, 2017. "Bayesian Clustering and Dimension Reduction in Multivariate Extremes," LIDAM Discussion Papers ISBA 2017017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    4. Mai Jan-Frederik, 2019. "Simulation algorithms for hierarchical Archimedean copulas beyond the completely monotone case," Dependence Modeling, De Gruyter, vol. 7(1), pages 202-214, January.
    5. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    6. repec:kan:wpaper:202105 is not listed on IDEAS
    7. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    8. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    9. Górecki, Jan & Hofert, Marius & Okhrin, Ostap, 2021. "Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    10. Hautsch, Nikolaus & Okhrin, Ostap & Ristig, Alexander, 2012. "Modeling time-varying dependencies between positive-valued high-frequency time series," SFB 649 Discussion Papers 2012-054, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Nurudeen A. Adegoke & Andrew Punnett & Marti J. Anderson, 2022. "Estimation of Multivariate Dependence Structures via Constrained Maximum Likelihood," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 240-260, June.
    12. De Keyser, Steven & Gijbels, Irène, 2025. "High-dimensional copula-based Wasserstein dependence," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
    13. Stolfi, Paola & Bernardi, Mauro & Petrella, Lea, 2025. "Sparse simulation-based estimator built on quantiles," Econometrics and Statistics, Elsevier, vol. 34(C), pages 32-43.
    14. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    15. Mazo, Gildas & Uyttendaele, Nathan, 2016. "Building conditionally dependent parametric one-factor copulas," LIDAM Discussion Papers ISBA 2016004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2021. "Estimation and optimal structure selection of high-dimensional Toeplitz covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    17. Derumigny, A. & Fermanian, J.-D., 2022. "Identifiability and estimation of meta-elliptical copula generators," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    18. repec:hum:wpaper:sfb649dp2013-041 is not listed on IDEAS
    19. repec:hum:wpaper:sfb649dp2012-054 is not listed on IDEAS
    20. Bingduo Yang & Christian M. Hafner & Guannan Liu & Wei Long, 2021. "Semiparametric estimation and variable selection for single‐index copula models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 962-988, November.
    21. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    22. Yang, Bingduo & Cai, Zongwu & Hafner, Christian M. & Liu, Guannan, 2018. "Trending Mixture Copula Models with Copula Selection," IRTG 1792 Discussion Papers 2018-057, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2019-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.