IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2025s-27.html
   My bibliography  Save this paper

Territorial Control of Data and Compute in Generative AI: A New Paradigm of Competitive Advantage

Author

Listed:
  • Frédéric Marty
  • Thierry Warin

Abstract

The rapid advancement of generative artificial intelligence (AI) is increasingly shaped by control over two critical inputs: high-quality data and the compute infrastructure required to train and update large-scale model weights. This paper argues that these inputs – rather than algorithmic talent or novel architectures alone – have become the decisive strategic assets in generative AI, creating steep structural barriers to entry. We examine who controls these resources and how this control is territorially distributed across countries. Building on literature in industrial organization, competition policy, and international political economy, we highlight a gap in existing research: insufficient attention to the territorial concentration of “model-weight-setting” capacity, i.e. the ability to train cutting-edge foundation models. We find that the capacity to set foundation model weights is overwhelmingly concentrated in a few firms and regions, reinforcing market concentration and limiting the AI development sovereignty of most countries. While innovations in model architectures and efficiency (illustrated by the DeepSeek case) can reduce compute requirements at the margin, they do not eliminate the scale advantages conferred by privileged access to massive proprietary datasets and nation-scale computing clusters. The paper concludes with implications for competition and regulation, arguing that the territorial control of data and compute resources is a fundamental structural challenge for both market competition and global equity in AI. Les progrès rapides de l’intelligence artificielle générative (IA) sont de plus en plus conditionnés par le contrôle de deux intrants essentiels : des données de haute qualité et l’infrastructure de calcul nécessaire pour entraîner et actualiser les poids de modèles à grande échelle. Cet article soutient que ces intrants – plutôt que le seul talent algorithmique ou la nouveauté des architectures – sont devenus les actifs stratégiques décisifs de l’IA générative, créant ainsi d’importantes barrières structurelles à l’entrée. Nous examinons qui contrôle ces ressources et comment ce contrôle se répartit territorialement entre les pays. En nous appuyant sur la littérature en organisation industrielle, en politique de concurrence et en économie politique internationale, nous mettons en évidence une lacune dans les recherches existantes : l’attention insuffisante portée à la concentration territoriale de la « capacité de réglage des poids des modèles », c’est-à-dire la faculté d’entraîner des modèles de fondation de pointe. Nos résultats montrent que cette capacité est largement concentrée dans quelques entreprises et régions, ce qui renforce la concentration des marchés et limite la souveraineté de la plupart des pays en matière de développement de l’IA. Bien que les innovations en matière d’architectures de modèles et d’efficacité (comme l’illustre le cas DeepSeek) puissent réduire les besoins en calcul à la marge, elles n’éliminent pas les avantages d’échelle conférés par l’accès privilégié à d’immenses ensembles de données propriétaires et à des grappes de calcul de dimension nationale. L’article conclut en soulignant les implications pour la concurrence et la régulation, en avançant que le contrôle territorial des données et des ressources de calcul constitue un défi structurel fondamental pour la concurrence sur les marchés et pour l’équité mondiale en matière d’IA.

Suggested Citation

  • Frédéric Marty & Thierry Warin, 2025. "Territorial Control of Data and Compute in Generative AI: A New Paradigm of Competitive Advantage," CIRANO Working Papers 2025s-27, CIRANO.
  • Handle: RePEc:cir:cirwor:2025s-27
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2025s-27.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bougette, Patrice & Budzinski, Oliver & Marty, Frédéric, 2025. "Ex-ante versus Ex-post in competition law enforcement: Blurred boundaries and economic rationale," International Review of Law and Economics, Elsevier, vol. 82(C).
    2. Patrice Bougette & Oliver Budzinski & Frédéric Marty, 2019. "Exploitative Abuse and Abuse of Economic Dependence: What Can We Learn From an Industrial Organization Approach?," Revue d'économie politique, Dalloz, vol. 129(2), pages 261-286.
    3. Jean Tirole, 2023. "Competition and the Industrial Challenge for the Digital Age," Annual Review of Economics, Annual Reviews, vol. 15(1), pages 573-605, September.
    4. Frédéric Marty & Thierry Warin, 2023. "Multi-sided platforms and innovation: A competition law perspective," Post-Print halshs-03921366, HAL.
    5. Yang, Xing, 2025. "AI competition and firm value: Evidence from DeepSeek’s disruption," Finance Research Letters, Elsevier, vol. 80(C).
    6. Jean Tirole, 2023. "Competition and the Industrial Challenge for the Digital Age," Post-Print hal-04464905, HAL.
    7. Christophe Carugati, 2023. "Competition in generative artificial intelligence foundation models," Bruegel Working Papers node_9258, Bruegel.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Grilli & Sergio Mariotti & Riccardo Marzano, 2024. "Artificial intelligence and shapeshifting capitalism," Journal of Evolutionary Economics, Springer, vol. 34(2), pages 303-318, April.
    2. Masahito AMBASHI & Naoyuki HARAOKA & Fukunari KIMURA & Yasuyuki SAWADA & Masakazu TOYODA & Shujiro URATA, 2025. "New Industrial Policies to Achieve Sustainable Asia-Wide Economic Development," Working Papers DP-2024-34, Economic Research Institute for ASEAN and East Asia (ERIA).
    3. Batabyal, Amitrajeet A. & Kourtit, Karima & Nijkamp, Peter, 2025. "Political competition, fiscal policy, and economic performance in techno-creative places," World Development, Elsevier, vol. 188(C).
    4. Federico Etro, 2024. "e‐Commerce platforms and self‐preferencing," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1516-1543, September.
    5. Frédéric Marty & Thierry Warin, 2025. "Data and Computing Power: The New Frontiers of Competition in Generative AI," GREDEG Working Papers 2025-38, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    6. Tom'as Aguirre, 2024. "On Labs and Fabs: Mapping How Alliances, Acquisitions, and Antitrust are Shaping the Frontier AI Industry," Papers 2406.01722, arXiv.org, revised Jun 2024.
    7. V. V. Vertogradov & S. V. Shchelokova, 2025. "Comparative Competitive Analysis of Generative AI Chatbots in Russia and Worldwide," Studies on Russian Economic Development, Springer, vol. 36(5), pages 643-652, October.
    8. Frédéric Marty, 2020. "Is the Consumer Welfare Obsolete? A European Union Competition Law Perspective," GREDEG Working Papers 2020-13, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    9. Frédéric Marty & Thierry Warin, 2020. "Digital Platforms' Information Concentration: From Keystone Players to Gatekeepers," CIRANO Working Papers 2020s-70, CIRANO.
    10. Safieddine Bouali, 2020. "Covid-19 Pandemic and Abuse of Economic Dependence. Short-run Market Vulnerability and Exploitative conduct [Pandémie Covid-19 et abus de dépendance économique. Vulnérabilité du marché à court term," Working Papers hal-02564678, HAL.
    11. Budzinski, Oliver, 2020. "The economics of international competition policy: New challenges in the light of digitization?," Ilmenau Economics Discussion Papers 135, Ilmenau University of Technology, Institute of Economics.
    12. Michael G Jacobides & Ioannis Lianos, 2021. "Ecosystems and competition law in theory and practice [Ecosystem as structure: an actionable construct for strategy]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 30(5), pages 1199-1229.
    13. Budzinski, Oliver, 2021. "Wettbewerbsordnung und digitale Medienmärkte," Ilmenau Economics Discussion Papers 153, Ilmenau University of Technology, Institute of Economics.
    14. Rosa-Branca Esteves & Francisco Carballo-Cruz, 2021. "Access to Data for Personalized Pricing: Can it raise entry barriers and abuse of dominance concerns?," NIPE Working Papers 05/2021, NIPE - Universidade do Minho.
    15. Budzinski, Oliver & Gänßle, Sophia & Stöhr, Annika, 2020. "The draft for the 10th amendment of German competition law: Towards a new concept of "Outstanding relevance across markets"?," Ilmenau Economics Discussion Papers 142, Ilmenau University of Technology, Institute of Economics.
    16. Frédéric Marty, 2021. "Competition and Regulatory Challenges in Digital Markets: How to Tackle the Issue of Self-Preferencing?," Working Papers halshs-03227392, HAL.
    17. Frédéric Marty & Thierry Warin, 2020. "Keystone Players and Complementors: An Innovation Perspective," Working Papers hal-03029748, HAL.
    18. Frédéric Marty, 2021. "The concentration of digital markets: How to preserve the conditions for effective and undistorted competition?," CIRANO Working Papers 2021s-27, CIRANO.
    19. Budzinski, Oliver & Gänßle, Sophia & Lindstädt-Dreusicke, Nadine, 2021. "Data (r)evolution - The economics of algorithmic search and recommender services," Ilmenau Economics Discussion Papers 148, Ilmenau University of Technology, Institute of Economics.
    20. Budzinski, Oliver & Gruésevaja, Marina & Noskova, Victoriia, 2020. "The economics of the German investigation of Facebook's data collection," Ilmenau Economics Discussion Papers 139, Ilmenau University of Technology, Institute of Economics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2025s-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.