IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2025s-07.html
   My bibliography  Save this paper

Algorithmic collusion and the minimum price Markov game

Author

Listed:
  • Igor Sadoune
  • Marcelin Joanis
  • Andrea Lodi

Abstract

This paper introduces the Minimum Price Markov Game (MPMG), a theoretical model that reasonably approximates real-world first-price markets following the minimum price rule, such as public auctions. The goal is to provide researchers and practitioners with a framework to study market fairness and regulation in both digitized and non-digitized public procurement processes, amid growing concerns about algorithmic collusion in online markets. Using multi-agent reinforcement learningdriven artificial agents, we demonstrate that (i) the MPMG is a reliable model for first-price market dynamics, (ii) the minimum price rule is generally resilient to non-engineered tacit coordination among rational actors, and (iii) when tacit coordination occurs, it relies heavily on self-reinforcing trends. These findings contribute to the ongoing debate about algorithmic pricing and its implications. Cet article présente le jeu du prix minimum de Markov (MPMG), un modèle théorique qui se rapproche raisonnablement des marchés réels qui suivent la règle du prix minimum, tels que les enchères publiques. L'objectif est de fournir aux chercheurs et aux praticiens un cadre pour étudier l'équité du marché et la réglementation dans les processus de marchés publics numériques et non numériques, dans un contexte de préoccupations croissantes concernant la collusion algorithmique sur les marchés en ligne. En utilisant des agents artificiels basés sur l'apprentissage par renforcement multi-agents, nous démontrons que (i) le MPMG est un modèle fiable pour la dynamique du marché au premier prix, (ii) la règle du prix minimum est généralement résistante à la coordination tacite non technique entre les acteurs rationnels, et (iii) lorsque la coordination tacite se produit, elle s'appuie fortement sur des tendances qui se renforcent d'elles-mêmes. Ces résultats contribuent au débat en cours sur la tarification algorithmique et ses implications.

Suggested Citation

  • Igor Sadoune & Marcelin Joanis & Andrea Lodi, 2025. "Algorithmic collusion and the minimum price Markov game," CIRANO Working Papers 2025s-07, CIRANO.
  • Handle: RePEc:cir:cirwor:2025s-07
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2025s-07.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Igor Sadoune & Marcelin Joanis & Andrea Lodi, 2025. "Implementing a Hierarchical Deep Learning Approach for Simulating Multilevel Auction Data," Computational Economics, Springer;Society for Computational Economics, vol. 65(4), pages 2029-2056, April.
    2. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    3. Stephanie Assad & Robert Clark & Daniel Ershov & Lei Xu, 2020. "Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market," CESifo Working Paper Series 8521, CESifo.
    4. Sylvain Chassang & Juan Ortner, 2019. "Collusion in Auctions with Constrained Bids: Theory and Evidence from Public Procurement," Journal of Political Economy, University of Chicago Press, vol. 127(5), pages 2269-2300.
    5. Harrington, Joseph E. & Hernan Gonzalez, Roberto & Kujal, Praveen, 2016. "The relative efficacy of price announcements and express communication for collusion: Experimental findings," Journal of Economic Behavior & Organization, Elsevier, vol. 128(C), pages 251-264.
    6. Joshua A. Gerlick & Stephan M. Liozu, 2020. "Ethical and legal considerations of artificial intelligence and algorithmic decision-making in personalized pricing," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(2), pages 85-98, April.
    7. Frédéric Marty & Thierry Warin, 2023. "Deciphering Algorithmic Collusion: Insights from Bandit Algorithms and Implications for Antitrust Enforcement," CIRANO Working Papers 2023s-26, CIRANO.
    8. Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
    9. Youri Chassin & Marcelin Joanis, 2010. "Détecter et prévenir la collusion dans les marchés publics en construction: Meilleures pratiques favorisant la concurrence," CIRANO Project Reports 2010rp-13, CIRANO.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiquan Gu & Leonardo Madio & Carlo Reggiani, 2019. "Exclusive Data, Price Manipulation and Market Leadership," CESifo Working Paper Series 7853, CESifo.
    2. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    3. John Asker & Chaim Fershtman & Ariel Pakes, 2024. "The impact of artificial intelligence design on pricing," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 276-304, March.
    4. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    5. Normann, Hans-Theo & Sternberg, Martin, 2023. "Human-algorithm interaction: Algorithmic pricing in hybrid laboratory markets," European Economic Review, Elsevier, vol. 152(C).
    6. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    7. Fourberg, Niklas & Marques Magalhaes, Katrin & Wiewiorra, Lukas, 2023. "They Are Among Us: Pricing Behavior of Algorithms in the Field," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277958, International Telecommunications Society (ITS).
    8. Bingyan Han, 2021. "Understanding algorithmic collusion with experience replay," Papers 2102.09139, arXiv.org, revised Mar 2021.
    9. Marcel Wieting & Geza Sapi, 2021. "Algorithms in the Marketplace: An Empirical Analysis of Automated Pricing in E-Commerce," Working Papers 21-06, NET Institute.
    10. Werner, Tobias, 2021. "Algorithmic and human collusion," DICE Discussion Papers 372, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    11. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    12. Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
    13. Gonzalo Ballestero, 2021. "Collusion and Artificial Intelligence: A computational experiment with sequential pricing algorithms under stochastic costs," Young Researchers Working Papers 1, Universidad de San Andres, Departamento de Economia, revised Oct 2022.
    14. Hanspach, Philip & Sapi, Geza & Wieting, Marcel, 2024. "Algorithms in the marketplace: An empirical analysis of automated pricing in e-commerce," Information Economics and Policy, Elsevier, vol. 69(C).
    15. Laura Abrardi & Carlo Cambini & Laura Rondi, 2022. "Artificial intelligence, firms and consumer behavior: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 969-991, September.
    16. Gonzalo Ballestero, 2022. "Collusion and Artificial Intelligence: A Computational Experiment with Sequential Pricing Algorithms under Stochastic Costs," Working Papers 118, Red Nacional de Investigadores en Economía (RedNIE).
    17. Timo Klein, 2021. "Autonomous algorithmic collusion: Q‐learning under sequential pricing," RAND Journal of Economics, RAND Corporation, vol. 52(3), pages 538-558, September.
    18. Stefano Colombo & Aldo Pignataro, 2022. "Information accuracy and collusion," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(3), pages 638-656, August.
    19. David P. Brown & Andrew Eckert, 2022. "Pricing Patterns in Wholesale Electricity Markets: Unilateral Market Power or Coordinated Behavior?," Journal of Industrial Economics, Wiley Blackwell, vol. 70(1), pages 168-216, March.
    20. Calvano, Emilio & Calzolari, Giacomo & Denicoló, Vincenzo & Pastorello, Sergio, 2021. "Algorithmic collusion with imperfect monitoring," International Journal of Industrial Organization, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2025s-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.