IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/622.html
   My bibliography  Save this paper

Minimax Risk in Estimating Kink Threshold and Testing

Author

Listed:
  • Javier Hidalgo
  • Heejun Lee
  • Heejun Lee
  • Jungyoon Lee
  • Myung Hwan Seo

Abstract

We derive a risk lower bound in estimating the threshold parameter without knowing whether the threshold regression model is continuous or not. The bound goes to zero as the sample size n grows only at the cube root rate. Motivated by this nding, we develop a continuity test for the threshold regression model and a bootstrap to compute its p-values. The validity of the bootstrap is established, and its nite sample property is explored through Monte Carlo simulations.

Suggested Citation

  • Javier Hidalgo & Heejun Lee & Heejun Lee & Jungyoon Lee & Myung Hwan Seo, 2021. "Minimax Risk in Estimating Kink Threshold and Testing," STICERD - Econometrics Paper Series 622, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:622
    as

    Download full text from publisher

    File URL: https://sticerd.lse.ac.uk/dps/em/em622.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Yoosoon & Choi, Yongok & Park, Joon Y., 2017. "A new approach to model regime switching," Journal of Econometrics, Elsevier, vol. 196(1), pages 127-143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fédéric Holm-Hadulla & Kirstin Hubrich, 2017. "Macroeconomic Implications of Oil Price Fluctuations : A Regime-Switching Framework for the Euro Area," Finance and Economics Discussion Series 2017-063, Board of Governors of the Federal Reserve System (U.S.).
    2. Liu, Yue & Sun, Huaping & Zhang, Jijian & Taghizadeh-Hesary, Farhad, 2020. "Detection of volatility regime-switching for crude oil price modeling and forecasting," Resources Policy, Elsevier, vol. 69(C).
    3. Nguyen Bao Anh & Yiqiang Q. Zhao, 2021. "Half Century of Gold Price: Regime-Switching and Forecasting Framework," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 12(3), pages 1-18, May.
    4. Hao, Shiming, 2021. "True structure change, spurious treatment effect? A novel approach to disentangle treatment effects from structure changes," MPRA Paper 108679, University Library of Munich, Germany.
    5. Kirstin Hubrich & Daniel F. Waggoner, 2022. "The Transmission of Financial Shocks and Leverage of Financial Institutions: An Endogenous Regime-Switching Framework," FRB Atlanta Working Paper 2022-5, Federal Reserve Bank of Atlanta.
    6. Felix Kapfhammer, 2023. "The Economic Consequences of Effective Carbon Taxes," Working Papers No 01/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    7. Lhuissier, Stéphane, 2022. "Financial conditions and macroeconomic downside risks in the euro area," European Economic Review, Elsevier, vol. 143(C).
    8. Andrei A. Sirchenko, 2017. "An endogenous regime-switching model of ordered choice with an application to federal funds rate target," 2017 Papers psi424, Job Market Papers.
    9. Jeong, Minsoo, 2022. "Modelling persistent stationary processes in continuous time," Economic Modelling, Elsevier, vol. 109(C).
    10. Anderl, Christina & Caporale, Guglielmo Maria, 2024. "Shipping cost uncertainty, endogenous regime switching and the global drivers of inflation," International Economics, Elsevier, vol. 178(C).
    11. Apergis, Nicholas & Pan, Wei-Fong & Reade, James & Wang, Shixuan, 2023. "Modelling Australian electricity prices using indicator saturation," Energy Economics, Elsevier, vol. 120(C).
    12. Julien Albertini & Stéphane Moyen, 2020. "A General and Efficient Method for Solving Regime-Switching DSGE Models," Working Papers 2035, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    13. Andrei Sirchenko, 2019. "A regime-switching model for the federal funds rate target," UvA-Econometrics Working Papers 19-01, Universiteit van Amsterdam, Dept. of Econometrics.
    14. Yoosoon Chang & Ana María Herrera & Elena Pesavento, 2023. "Oil prices uncertainty, endogenous regime switching, and inflation anchoring," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 820-839, September.
    15. Chang, Yoosoon & Kwak, Boreum, 2017. "U.S. monetary-fiscal regime changes in the presence of endogenous feedback in policy rules," IWH Discussion Papers 15/2017, Halle Institute for Economic Research (IWH).
    16. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2021. "Multimodality In Macrofinancial Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 861-886, May.
    17. Cho, Dooyeon & Han, Heejoon & Lee, Na Kyeong, 2019. "Carry trades and endogenous regime switches in exchange rate volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 58(C), pages 255-268.
    18. Focardi, Sergio M. & Fabozzi, Frank J. & Mazza, Davide, 2019. "Modeling local trends with regime shifting models with time-varying probabilities," International Review of Financial Analysis, Elsevier, vol. 66(C).
    19. Ruijun Bu & Jie Cheng & Fredj Jawadi, 2022. "A latent‐factor‐driven endogenous regime‐switching non‐Gaussian model: Evidence from simulation and application," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 3881-3896, October.
    20. Meitz, Mika & Saikkonen, Pentti, 2021. "Testing for observation-dependent regime switching in mixture autoregressive models," Journal of Econometrics, Elsevier, vol. 222(1), pages 601-624.

    More about this item

    Keywords

    Continuity Test; Kink; Risk lower bound; Unknown Threshold;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.