IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt51t364vz.html
   My bibliography  Save this paper

Mobile Transit Trip Planning with Real-Time Data

Author

Listed:
  • Jariyasunant, Jerald
  • Work, Daniel B.
  • Kerkez, Branko
  • Sengupta, Raja
  • Glaser, Steven
  • Bayen, Alexandre

Abstract

In this article, we describe the development of atransit trip planner(TTP) for mobile devicescalled Transitr, and evaluate its performance. The system predicts the shortest paths betweenany two points in the transit network using real-time information provided by a third party busarrival prediction system, relying on GPS equipped transit vehicles. Users submit their originand destination through a map-based iPhone application, or through a JavaScript enabled webbrowser. A server implementing a dynamic K-shortest paths algorithm with predicted linktravel times returns personalized route directions for the user, displayed on a map. To assessthe optimality and accuracy of the predicted shortest paths, an a posteriori comparison witha schedule-based transit trip planner and the GPS traces of the transit vehicles is performedon six-hundred origin destination pairs in San Francisco. The results show that routing usingthe predicted bus arrivals marginally increases the accuracy of the total travel time and theoptimality of the route. Suggestions to improve the accuracy and optimality using real-timeinformation are proposed.

Suggested Citation

  • Jariyasunant, Jerald & Work, Daniel B. & Kerkez, Branko & Sengupta, Raja & Glaser, Steven & Bayen, Alexandre, 2011. "Mobile Transit Trip Planning with Real-Time Data," University of California Transportation Center, Working Papers qt51t364vz, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt51t364vz
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/51t364vz.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daganzo, Carlos F, 2008. "How to Improve Bus Service," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6m707144, Institute of Transportation Studies, UC Berkeley.
    2. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    3. Rossetti, Manuel D. & Turitto, Timothy, 1998. "Comparing static and dynamic threshold based control strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(8), pages 607-620, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    2. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    3. Pilachowski, Joshua Michael, 2009. "An Approach to Reducing Bus Bunching," University of California Transportation Center, Working Papers qt6zc5j8xg, University of California Transportation Center.
    4. Hadas, Yuval & Shnaiderman, Matan, 2012. "Public-transit frequency setting using minimum-cost approach with stochastic demand and travel time," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1068-1084.
    5. Toledo, Tomer & Cats , Oded & Burghout, Wilco & Koutsopoulos , Haris N., 2013. "Mesoscopic simulation for transit operations," Working papers in Transport Economics 2013:29, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    6. Herbon, Avi & Hadas, Yuval, 2015. "Determining optimal frequency and vehicle capacity for public transit routes: A generalized newsvendor model," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 85-99.
    7. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    8. Shangyao Yan & Ching-Hui Tang, 2008. "An Integrated Framework for Intercity Bus Scheduling Under Stochastic Bus Travel Times," Transportation Science, INFORMS, vol. 42(3), pages 318-335, August.
    9. Daganzo, Carlos & Anderson, Paul, 2016. "Coordinating Transit Transfers in Real Time," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt25h4r974, Institute of Transportation Studies, UC Berkeley.
    10. Vee-Liem Saw & Lock Yue Chew, 2020. "No-boarding buses: Synchronisation for efficiency," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-34, March.
    11. Liu, Tao & Ceder, Avishai (Avi), 2018. "Integrated public transport timetable synchronization and vehicle scheduling with demand assignment: A bi-objective bi-level model using deficit function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 935-955.
    12. Cats, Oded & Loutos, Gerasimos, 2016. "Evaluating the added-value of online bus arrival prediction schemes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 35-55.
    13. Jiamin Zhao & Maged Dessouky & Satish Bukkapatnam, 2006. "Optimal Slack Time for Schedule-Based Transit Operations," Transportation Science, INFORMS, vol. 40(4), pages 529-539, November.
    14. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
    15. Chen, Zebin & D’Ariano, Andrea & Li, Shukai & Tessitore, Marta Leonina & Yang, Lixing, 2024. "Robust dynamic train regulation integrated with stop-skipping strategy in urban rail networks: An outer approximation based solution method," Omega, Elsevier, vol. 128(C).
    16. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    17. Konstantinos Gkiotsalitis & Nitin Maslekar, 2018. "Towards transfer synchronization of regularity-based bus operations with sequential hill-climbing," Public Transport, Springer, vol. 10(2), pages 335-361, August.
    18. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    19. Abdolmaleki, Mojtaba & Masoud, Neda & Yin, Yafeng, 2020. "Transit timetable synchronization for transfer time minimization," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 143-159.
    20. Chen, Yanru & Yi, Bing & Jiang, Yangsheng & Sun, Jidong & Wahab, M.I.M., 2018. "Inter-arrival time distribution of passengers at service facilities in underground subway stations: A case study of the metropolitan city of Chengdu in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 227-251.

    More about this item

    Keywords

    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt51t364vz. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.