IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt7h1084dq.html
   My bibliography  Save this paper

Freeway Traffic Control Using Variable Speed Limits

Author

Listed:
  • Lu, Xiao-Yun
  • Nowakowski, Christopher
  • Su, Dongyan
  • Shladover, Steven E

Abstract

The work reported here includes the development of the underlying theory for detecting traffic flow breakdown at a bottleneck and for defining the speed profiles that vehicles should be following in order to maximize the flow through the bottleneck region. It also includes a preliminary test of the communication of the variable speed limit values to an instrumented vehicle for display to drivers from the general public, in order to determine their reactions to the variable speed limits. The selection of variable speed limits (VSL) to reduce traffic breakdowns is based on careful modeling of the traffic dynamics and estimation of the probability of breakdown as a function of traffic speed and density. The VSL values chosen by the algorithm developed here were broadcast to a test vehicle driven along the I-80 corridor by 16 drivers from the general public, and their reactions to the VSL information were captured by recording data about their driving behavior and collecting their responses to a questionnaire. These results indicated that although the VSL concept is very promising, the implementation needs to provide for better filtering of noisy and inconsistent data so that drivers receive a display of VSL values that are stable in location and time and appear believable to the drivers.

Suggested Citation

  • Lu, Xiao-Yun & Nowakowski, Christopher & Su, Dongyan & Shladover, Steven E, 2011. "Freeway Traffic Control Using Variable Speed Limits," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7h1084dq, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt7h1084dq
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/7h1084dq.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    2. Sun, Qipeng & Cheng, Qianqian & Wang, Yongjie & Li, Tao & Ma, Fei & Yao, Zhigang, 2022. "Zip-merging behavior at Y-intersection based on intelligent travel points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    3. Zhang, Lei & Levinson, David, 2010. "Ramp metering and freeway bottleneck capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 218-235, May.
    4. Cassidy, Michael J. & Ahn, Soyoung, 2004. "Driver Turn-Taking Behavior in Congested Freeway Merges," University of California Transportation Center, Working Papers qt06j9k7h2, University of California Transportation Center.
    5. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    6. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
    7. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    8. Gao, Yang & Levinson, David, 2024. "A multi-stage spatial queueing model with logistic arrivals and departures consistent with the microscopic fundamental diagram and hysteresis," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    9. Chen, Chao, 2003. "Freeway Performance Measurement System (PeMS)," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6j93p90t, Institute of Transportation Studies, UC Berkeley.
    10. Kai Zhang & Jian Rong & Yacong Gao & Yue Chen, 2024. "Effects of Lane Imbalance on Capacity Drop and Emission in Expressway Merging Areas: A Simulation Analysis," Sustainability, MDPI, vol. 16(23), pages 1-21, November.
    11. Shen, Wei & Zhang, H.M., 2010. "Pareto-improving ramp metering strategies for reducing congestion in the morning commute," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 676-696, November.
    12. Skabardonis, Alexander & Kim, Amy, 2010. "Weaving Analysis, Evaluation and Refinement," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt70h664fh, Institute of Transportation Studies, UC Berkeley.
    13. C. Robin Lindsey & Erik T. Verhoef, 1999. "Congestion Modelling," Tinbergen Institute Discussion Papers 99-091/3, Tinbergen Institute.
    14. Ou, Hui & Tang, Tie-Qiao, 2018. "Impacts of moving bottlenecks on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 131-138.
    15. Liu, Wei & Yin, Yafeng & Yang, Hai, 2015. "Effectiveness of variable speed limits considering commuters’ long-term response," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 498-519.
    16. Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
    17. Han, Yu & Wu, Jiarui & Ding, Fan & Li, Zhibin & Liu, Pan & Leclercq, Ludovic, 2025. "Capacity drop at active bottlenecks: An empirical study based on trajectory data," Transportation Research Part B: Methodological, Elsevier, vol. 196(C).
    18. Geroliminis, Nikolas & Sun, Jie, 2011. "Hysteresis phenomena of a Macroscopic Fundamental Diagram in freeway networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 966-979, November.
    19. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.
    20. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt7h1084dq. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.