IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt63r0f737.html
   My bibliography  Save this paper

Development of Eco-Friendly Ramp Control for Connected and Automated Electric Vehicles

Author

Listed:
  • Wu, Guoyuan
  • Zhao, Zhouqiao
  • Wang, Ziran
  • Barth, Matthew J.

Abstract

With on-board sensors such as camera, radar, and Lidar, connected and automated vehicles (CAVs) can sense the surrounding environment and be driven autonomously and safely by themselves without colliding into other objects on the road. CAVs are also able to communicate with each other and roadside infrastructure via vehicle-to-vehicle and vehicle-to-infrastructure communications, respectively, sharing information on the vehicles’ states, signal phase and timing (SPaT) information, enabling CAVs to make decisions in a collaborative manner. As a typical scenario, ramp control attracts wide attention due to the concerns of safety and mobility in the merging area. In particular, if the line-of-the-sight is blocked (because of grade separation), then neither mainline vehicles nor on-ramp vehicles may well adapt their own dynamics to perform smoothed merging maneuvers. This may lead to speed fluctuations or even shockwave propagating upstream traffic along the corridor, thus potentially increasing the traffic delays and excessive energy consumption. In this project, the research team proposed a hierarchical ramp merging system that not only allowed microscopic cooperative maneuvers for connected and automated electric vehicles on the ramp to merge into mainline traffic flow, but also had controllability of ramp inflow rate, which enabled macroscopic traffic flow control. A centralized optimal control-based approach was proposed to both smooth the merging flow and improve the system-wide mobility of the network. Linear quadratic trackers in both finite horizon and receding horizon forms were developed to solve the optimization problem in terms of path planning and sequence determination, and a microscopic electric vehicle (EV) energy consumption model was applied to estimate the energy consumption. The simulation results confirmed that under the regulated inflow rate, the proposed system was able to avoid potential traffic congestion and improve the mobility (in terms of average speed) as much as 115%, compared to the conventional ramp metering and the ramp without any control approach. Interestingly, for EVs (connected and automated EVs in this study), the improved mobility may not necessarily result in the reduction of energy consumption. The “sweet spot” of average speed ranges from 27–34 mph for the EV models in this study. View the NCST Project Webpage

Suggested Citation

  • Wu, Guoyuan & Zhao, Zhouqiao & Wang, Ziran & Barth, Matthew J., 2020. "Development of Eco-Friendly Ramp Control for Connected and Automated Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt63r0f737, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt63r0f737
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/63r0f737.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bogenberger, Klaus & May, Adolf D., 1999. "Advanced Coordinated Traffic Responsive Ramp Metering Strategies," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3pq977ts, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levinson, David & Zhang, Lei, 2006. "Ramp meters on trial: Evidence from the Twin Cities metering holiday," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 810-828, December.
    2. Zhang, Lei & Levinson, David, 2010. "Ramp metering and freeway bottleneck capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 218-235, May.
    3. Zhang, Lei & Levinson, David, 2004. "Optimal freeway ramp control without origin-destination information," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 869-887, December.
    4. Kerner, Boris S., 2005. "Control of spatiotemporal congested traffic patterns at highway bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 565-601.
    5. Salvatore Trubia & Salvatore Curto & Salvatore Barberi & Alessandro Severino & Fabio Arena & Giovanni Pau, 2021. "Analysis and Evaluation of Ramp Metering: From Historical Evolution to the Application of New Algorithms and Engineering Principles," Sustainability, MDPI, vol. 13(2), pages 1-19, January.

    More about this item

    Keywords

    Engineering; Connected vehicles; Ecodriving; Electric vehicles; Highway traffic control; Intelligent vehicles; Macroscopic traffic flow; Optimization; Ramp metering; Traffic simulation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt63r0f737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.