IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p850-d481422.html
   My bibliography  Save this article

Analysis and Evaluation of Ramp Metering: From Historical Evolution to the Application of New Algorithms and Engineering Principles

Author

Listed:
  • Salvatore Trubia

    (Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy)

  • Salvatore Curto

    (Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy)

  • Salvatore Barberi

    (Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy)

  • Alessandro Severino

    (Department of Civil Engineering and Architecture, University of Catania, 95123 Catania, Italy)

  • Fabio Arena

    (Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy)

  • Giovanni Pau

    (Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy)

Abstract

In the modern era, characterized by intense urbanization and frequent travel between interconnected communities, the constant expansion of cities, associated with high densities and growing need for traveling, has led to a significant increase in road traffic volumes. More than ever, road traffic today requires effort to be managed effectively in order to improve performance and safety conditions, given the greater probability of unpleasant events such as accidents or road congestion with related delays and the increased stress levels of the user and infrastructure. Fortunately, there are already various engineering tools, such as ramp metering, that can be used for this purpose. Ramp metering allows for achieving the aforementioned desired benefits, including improving mobility, reliability, efficiency, and safety, and even reducing environmental impact. It also has been shown to be cost-effective from the existing literature. Further research will be necessary to strengthen the quality, efficacy, and efficiency of ramp metering, especially considering the fast-paced progress in technology (e.g., connected autonomous vehicles and drones used for surveys) and new challenging scenarios (e.g., congested industrial areas and emergency vehicles). This review’s scope is to present a general overview of principal ramp metering solutions, focusing on current research studies in the last couple of years and highlighting some of the main algorithms used for this purpose, depending on diverse scenarios. With this article, the authors desire to present the subject of ramp metering, providing a general overview of its story, evolution, and recent analytical models.

Suggested Citation

  • Salvatore Trubia & Salvatore Curto & Salvatore Barberi & Alessandro Severino & Fabio Arena & Giovanni Pau, 2021. "Analysis and Evaluation of Ramp Metering: From Historical Evolution to the Application of New Algorithms and Engineering Principles," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:850-:d:481422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/850/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/850/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bogenberger, Klaus & May, Adolf D., 1999. "Advanced Coordinated Traffic Responsive Ramp Metering Strategies," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3pq977ts, Institute of Transportation Studies, UC Berkeley.
    2. Ma, Xiaobo & Karimpour, Abolfazl & Wu, Yao-Jan, 2020. "Statistical evaluation of data requirement for ramp metering performance assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 248-261.
    3. Nima Dadashzadeh & Murat Ergun, 2019. "An Integrated Variable Speed Limit and ALINEA Ramp Metering Model in the Presence of High Bus Volume," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxin Yu & Lihui Zhang & Meng Zhang & Fengyue Jin & Yibing Wang, 2024. "Coordinated Ramp Metering Considering the Dynamics of Mixed-Autonomy Traffic," Sustainability, MDPI, vol. 16(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levinson, David & Zhang, Lei, 2006. "Ramp meters on trial: Evidence from the Twin Cities metering holiday," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 810-828, December.
    2. Zhang, Lei & Levinson, David, 2010. "Ramp metering and freeway bottleneck capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 218-235, May.
    3. Zhang, Lei & Levinson, David, 2004. "Optimal freeway ramp control without origin-destination information," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 869-887, December.
    4. Yongtao Zheng & Xuedong Hua & Wei Wang & Jialiang Xiao & Dongya Li, 2020. "Analysis of a Signalized Intersection with Dynamic Use of the Left-Turn Lane for Opposite through Traffic," Sustainability, MDPI, vol. 12(18), pages 1-29, September.
    5. Kerner, Boris S., 2005. "Control of spatiotemporal congested traffic patterns at highway bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 565-601.
    6. Wu, Guoyuan & Zhao, Zhouqiao & Wang, Ziran & Barth, Matthew J., 2020. "Development of Eco-Friendly Ramp Control for Connected and Automated Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt63r0f737, Institute of Transportation Studies, UC Davis.
    7. Robert Rijavec & Nima Dadashzadeh & Marijan Žura & Rok Marsetič, 2020. "Park and Pool Lots’ Impact on Promoting Shared Mobility and Carpooling on Highways: The Case of Slovenia," Sustainability, MDPI, vol. 12(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:850-:d:481422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.