Utilizing Highway Rest Areas for Electric Vehicle Charging: Economics and Impacts on Renewable Energy Penetration in California
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2016. "Electricity costs for an electric vehicle fueling station with Level 3 charging," Applied Energy, Elsevier, vol. 169(C), pages 813-830.
- Micari, Salvatore & Polimeni, Antonio & Napoli, Giuseppe & Andaloro, Laura & Antonucci, Vincenzo, 2017. "Electric vehicle charging infrastructure planning in a road network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 98-108.
- Zhao, Hengbing & Burke, Andrew, 2016. "Deployment of Sustainable Fueling/Charging Systems at California Highway Safety Roadside Rest Areas," Institute of Transportation Studies, Working Paper Series qt6r978156, Institute of Transportation Studies, UC Davis.
- Harris, Chioke B. & Webber, Michael E., 2014. "An empirically-validated methodology to simulate electricity demand for electric vehicle charging," Applied Energy, Elsevier, vol. 126(C), pages 172-181.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kiani, Behdad & Ogden, Joan, 2022. "California Hydrogen Infrastructure and ZEV Adoption Towards a Carbon Free Grid in 2045," Institute of Transportation Studies, Working Paper Series qt2gp9q07n, Institute of Transportation Studies, UC Davis.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2017. "Electricity costs for a Level 3 electric vehicle fueling station integrated with a building," Applied Energy, Elsevier, vol. 191(C), pages 367-384.
- Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Calviño, Aida, 2019. "Fast charging stations placement methodology for electric taxis in urban zones," Energy, Elsevier, vol. 188(C).
- Graham Town & Seyedfoad Taghizadeh & Sara Deilami, 2022. "Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning," Energies, MDPI, vol. 15(4), pages 1-30, February.
- Hipolito, F. & Vandet, C.A. & Rich, J., 2022. "Charging, steady-state SoC and energy storage distributions for EV fleets," Applied Energy, Elsevier, vol. 317(C).
- Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Heymann, Fabian, 2021. "Spatial connection cost minimization of EV fast charging stations in electric distribution networks using local search and graph theory," Energy, Elsevier, vol. 235(C).
- Zhang Yue & Arash Farnoosh & Qi Zang & Siyuan Chen, 2018. "GIS-Based Multi-Objective Particle Swarm Optimization of Charging Station of Electric Vehicles – Taking a District in Beijing as an Example," Working Papers hal-03187920, HAL.
- Gunkel, Philipp Andreas & Bergaentzlé, Claire & Græsted Jensen, Ida & Scheller, Fabian, 2020. "From passive to active: Flexibility from electric vehicles in the context of transmission system development," Applied Energy, Elsevier, vol. 277(C).
- Chung, Yu-Wei & Khaki, Behnam & Li, Tianyi & Chu, Chicheng & Gadh, Rajit, 2019. "Ensemble machine learning-based algorithm for electric vehicle user behavior prediction," Applied Energy, Elsevier, vol. 254(C).
- Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
- Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.
- Su Su & Hao Li & David Wenzhong Gao, 2017. "Optimal Planning of Charging for Plug-In Electric Vehicles Focusing on Users’ Benefits," Energies, MDPI, vol. 10(7), pages 1-15, July.
- Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
- Balu, Korra & Mukherjee, V., 2024. "Optimal deployment of electric vehicle charging stations, renewable distributed generation with battery energy storage and distribution static compensator in radial distribution network considering un," Applied Energy, Elsevier, vol. 359(C).
- Joris De Hoog & Joris Jaguemont & Mohamed Abdel-Monem & Peter Van Den Bossche & Joeri Van Mierlo & Noshin Omar, 2018. "Combining an Electrothermal and Impedance Aging Model to Investigate Thermal Degradation Caused by Fast Charging," Energies, MDPI, vol. 11(4), pages 1-15, March.
- Dietmar Göhlich & Kai Nagel & Anne Magdalene Syré & Alexander Grahle & Kai Martins-Turner & Ricardo Ewert & Ricardo Miranda Jahn & Dominic Jefferies, 2021. "Integrated Approach for the Assessment of Strategies for the Decarbonization of Urban Traffic," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
- C. Birk Jones & Matthew Lave & William Vining & Brooke Marshall Garcia, 2021. "Uncontrolled Electric Vehicle Charging Impacts on Distribution Electric Power Systems with Primarily Residential, Commercial or Industrial Loads," Energies, MDPI, vol. 14(6), pages 1-16, March.
- Andrenacci, N. & Genovese, A. & Ragona, R., 2017. "Determination of the level of service and customer crowding for electric charging stations through fuzzy models and simulation techniques," Applied Energy, Elsevier, vol. 208(C), pages 97-107.
- Tsiropoulos, Ioannis & Siskos, Pelopidas & Capros, Pantelis, 2022. "The cost of recharging infrastructure for electric vehicles in the EU in a climate neutrality context: Factors influencing investments in 2030 and 2050," Applied Energy, Elsevier, vol. 322(C).
- Varone, Alberto & Heilmann, Zeno & Porruvecchio, Guido & Romanino, Alessandro, 2024. "Solar parking lot management: An IoT platform for smart charging EV fleets, using real-time data and production forecasts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Zhixin Pan & Jianming Wang & Wenlong Liao & Haiwen Chen & Dong Yuan & Weiping Zhu & Xin Fang & Zhen Zhu, 2019. "Data-Driven EV Load Profiles Generation Using a Variational Auto-Encoder," Energies, MDPI, vol. 12(5), pages 1-15, March.
More about this item
Keywords
Engineering; Electric vehicle charging; Electric vehicles; Intercity travel; Range (Vehicles); Renewable energy sources; Roadside rest areas; Solar power generation; Travel behavior; Travel demand;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2020-04-27 (Energy Economics)
- NEP-ENV-2020-04-27 (Environmental Economics)
- NEP-REG-2020-04-27 (Regulation)
- NEP-TRE-2020-04-27 (Transport Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt2c91x13m. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.