IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/258.html
   My bibliography  Save this paper

Evolution of coupled lives' dependency across generations and pricing impact

Author

Listed:
  • Elisa Luciano
  • Jaap Spreeuw
  • Elena Vigna

Abstract

This paper studies the dependence between coupled lives - both within and across generations - and its effects on prices of reversionary annuities in the presence of longevity risk. Longevity risk is represented via a stochastic mortality intensity. Dependence is modelled through copula functions. We consider Archimedean single and multi-parameter copulas. We find that dependence decreases when passing from older generations to younger generations. Not only the level of dependence but also its features - as measured by the copula - change across generations: the best-fit Archimedean copula is not the same across generations. Moreover, for all the generations under exam the single-parameter copula is dominated by the two-parameter one. The independence assumption produces quantifiable mispricing of reversionary annuities. The misspecification of the copula produces different mispricing effects on different generations. The research is conducted using a well-known dataset of double life contracts.

Suggested Citation

  • Elisa Luciano & Jaap Spreeuw & Elena Vigna, 2012. "Evolution of coupled lives' dependency across generations and pricing impact," Carlo Alberto Notebooks 258, Collegio Carlo Alberto.
  • Handle: RePEc:cca:wpaper:258
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2018/11/no.258.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    2. Luciano, Elisa & Spreeuw, Jaap & Vigna, Elena, 2008. "Modelling stochastic mortality for dependent lives," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 234-244, October.
    3. Elisa Luciano & Elena Vigna, 2005. "Non mean reverting affine processes for stochastic mortality," ICER Working Papers - Applied Mathematics Series 4-2005, ICER - International Centre for Economic Research.
    4. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    5. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    6. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    7. Kojadinovic, Ivan & Yan, Jun, 2010. "Modeling Multivariate Distributions with Continuous Margins Using the copula R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i09).
    8. Arkady E. Shemyakin & Heekyung Youn, 2006. "Copula models of joint last survivor analysis," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(2), pages 211-224, March.
    9. Christian Genest & Johanna Nešlehová & Jean-François Quessy, 2012. "Tests of symmetry for bivariate copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 811-834, August.
    10. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    2. Kira Henshaw & Corina Constantinescu & Olivier Menoukeu Pamen, 2020. "Stochastic Mortality Modelling for Dependent Coupled Lives," Risks, MDPI, vol. 8(1), pages 1-28, February.
    3. Anastasia Novokreshchenova, 2016. "Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models," Risks, MDPI, vol. 4(4), pages 1-28, December.
    4. Ying Jiao & Yahia Salhi & Shihua Wang, 2022. "Dynamic Bivariate Mortality Modelling," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 917-938, June.
    5. Elisa Luciano & Jaap Spreeuw & Elena Vigna, 2016. "Spouses’ Dependence across Generations and Pricing Impact on Reversionary Annuities," Risks, MDPI, vol. 4(2), pages 1-18, May.
    6. Apicella, Giovanna & Dacorogna, Michel M, 2016. "A General framework for modelling mortality to better estimate its relationship with interest rate risks," MPRA Paper 75788, University Library of Munich, Germany.
    7. Ying Jiao & Yahia Salhi & Shihua Wang, 2021. "Dynamic Bivariate Mortality Modelling," Working Papers hal-03244324, HAL.
    8. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    9. Yang Chang & Michael Sherris, 2018. "Longevity Risk Management and the Development of a Value-Based Longevity Index," Risks, MDPI, vol. 6(1), pages 1-20, February.
    10. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    11. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2017. "Retirement spending and biological age," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 58-76.
    12. Delong, Lukasz & Gerrard, Russell & Haberman, Steven, 2008. "Mean-variance optimization problems for an accumulation phase in a defined benefit plan," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 107-118, February.
    13. Date, P. & Mamon, R. & Jalen, L. & Wang, I.C., 2010. "A linear algebraic method for pricing temporary life annuities and insurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 98-104, August.
    14. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    15. Jennifer L. Wang & H.C. Huang & Sharon S. Yang & Jeffrey T. Tsai, 2010. "An Optimal Product Mix for Hedging Longevity Risk in Life Insurance Companies: The Immunization Theory Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 473-497, June.
    16. Luciano, Elisa & Spreeuw, Jaap & Vigna, Elena, 2008. "Modelling stochastic mortality for dependent lives," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 234-244, October.
    17. Qian, Linyi & Wang, Wei & Wang, Rongming & Tang, Yincai, 2010. "Valuation of equity-indexed annuity under stochastic mortality and interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 123-129, October.
    18. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    19. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    20. Stefan Tappe & Stefan Weber, 2019. "Stochastic mortality models: An infinite dimensional approach," Papers 1907.05157, arXiv.org.

    More about this item

    Keywords

    copula; goodness-of-fit; significance test; stochastic mortality; generation effect; reversionary annuity.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • J12 - Labor and Demographic Economics - - Demographic Economics - - - Marriage; Marital Dissolution; Family Structure

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.