IDEAS home Printed from https://ideas.repec.org/p/boa/wpaper/202420.html
   My bibliography  Save this paper

A Note on AIC and TIC for Model Selection

Author

Listed:
  • Yong Li

    (Renmin University of China)

  • Zhou Wu

    (Zhejiang University)

  • Jun Yu

    (University of Macau)

  • Tao Zeng

    (Zhejiang University)

Abstract

This note gives a rigorous justification to Akaike information criterion (AIC) and Takeuchi information criterion (TIC). The existing literature has shown that, when the candidate model is a good approximation of the true data generating process (DGP), AIC is an asymptotic unbiased estimator of the expected Kullback-Leibler divergence between the DGP and the plug-in predictive distribution. When the candidate model is misspecified, TIC can be regraded as a robust version of AIC with its justification following a similar line of argument. However, the justifications in current literature are predominantly confined to the iid scenario. In this note, we establish the asymptotic unbiasedness of AIC and TIC under certain regular conditions. These conditions are applicable in various scenarios, encompassing weakly dependent data.

Suggested Citation

  • Yong Li & Zhou Wu & Jun Yu & Tao Zeng, 2024. "A Note on AIC and TIC for Model Selection," Working Papers 202420, University of Macau, Faculty of Business Administration.
  • Handle: RePEc:boa:wpaper:202420
    as

    Download full text from publisher

    File URL: https://fba.um.edu.mo/wp-content/uploads/RePEc/doc/202420.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Shi & C‐L. Tsai, 1998. "A note on the unification of the Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 551-558.
    2. Cavanaugh, Joseph E., 1997. "Unifying the derivations for the Akaike and corrected Akaike information criteria," Statistics & Probability Letters, Elsevier, vol. 33(2), pages 201-208, April.
    3. Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
    4. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, Enero-Abr.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Tovar-Falón & Guillermo Martínez-Flórez & Isaías Ceña-Tapia, 2023. "Some Extensions of the Asymmetric Exponentiated Bimodal Normal Model for Modeling Data with Positive Support," Mathematics, MDPI, vol. 11(7), pages 1-19, March.
    2. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    3. Ivana Lolić & Petar Sorić & Marija Logarušić, 2022. "Economic Policy Uncertainty Index Meets Ensemble Learning," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 401-437, August.
    4. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    5. Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
    6. Messner, Wolfgang, 2023. "The contingency impact of culture on health security capacities for pandemic preparedness: A moderated Bayesian inference analysis," Journal of International Management, Elsevier, vol. 29(5).
    7. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    8. Alexandra Ferreira‐Lopes & Pedro Linhares & Luís Filipe Martins & Tiago Neves Sequeira, 2022. "Quantitative easing and economic growth in Japan: A meta‐analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 235-268, February.
    9. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    10. Zhang, Xiang & Saelens, Dirk & Roels, Staf, 2022. "Estimating dynamic solar gains from on-site measured data: An ARX modelling approach," Applied Energy, Elsevier, vol. 321(C).
    11. Matthew W. Wheeler & Jose Cortiñas Abrahantes & Marc Aerts & Jeffery S. Gift & Jerry Allen Davis, 2022. "Continuous model averaging for benchmark dose analysis: Averaging over distributional forms," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    12. Samuel Müller & Alan H. Welsh, 2010. "On Model Selection Curves," International Statistical Review, International Statistical Institute, vol. 78(2), pages 240-256, August.
    13. Riani, Marco & Atkinson, Anthony Curtis & Corbellini, Aldo & Farcomeni, Alessio & Laurini, Fabrizio, 2024. "Information Criteria for Outlier Detection Avoiding Arbitrary Significance Levels," Econometrics and Statistics, Elsevier, vol. 29(C), pages 189-205.
    14. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    15. Chang, Yung-Chi & Enkhjargal, Uguumur & Huang, Chen-I & Lin, Wen-Ling & Ho, Chi-Ming, 2020. "Factors Affecting the Internet Banking Adoption," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 54(3), pages 117-131.
    16. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    17. Egil Ferkingstad & Anders L{o}land & Mathilde Wilhelmsen, 2011. "Causal modeling and inference for electricity markets," Papers 1110.5429, arXiv.org.
    18. Philippe Van Kerm & Seunghee Yu & Chung Choe, 2016. "Decomposing quantile wage gaps: a conditional likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 507-527, August.
    19. Martin Jullum & Nils Lid Hjort, 2019. "What price semiparametric Cox regression?," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 406-438, July.
    20. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.

    More about this item

    Keywords

    AIC; TIC; Expected loss function; Kullback-Leibler divergence; Model selection; Plug-in predictive distribution; weakly dependent data.;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boa:wpaper:202420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carla Leong (email available below). General contact details of provider: https://edirc.repec.org/data/fbmacmo.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.