IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/729.html
   My bibliography  Save this paper

Assessing swaption portfolios for prepayment risk mitigation. A parametric perspective

Author

Listed:
  • Monaco, Andrea

    (Center for Mathematical Economics, Bielefeld University)

  • Perrotta, Adamaria

    (Center for Mathematical Economics, Bielefeld University)

  • Sgarabottolo, Alessandro

    (Center for Mathematical Economics, Bielefeld University)

Abstract

We analyze the price behavior of Bermudan swaption portfolios used for hedging prepayment-driven interest rate risks in loan portfolios. We evaluate a variety of swaption portfolios across maturities and prepayment rates under various market conditions. Our findings reveal the existence of a parametric relation between swaption portfolio prices and the characteristics of the hedged loan. This relationship holds across different market conditions and valuation models, suggesting that one can swiftly adjust a swaption-based hedging strategy as loan portfolio characteristics evolve. This parametric approach allows financial institutions to reduce costs when assessing prepayment risks in their loan portfolios.

Suggested Citation

  • Monaco, Andrea & Perrotta, Adamaria & Sgarabottolo, Alessandro, 2025. "Assessing swaption portfolios for prepayment risk mitigation. A parametric perspective," Center for Mathematical Economics Working Papers 729, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:729
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/3006150/3006151
    File Function: First Version, 2023
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    2. repec:bla:jfinan:v:44:y:1989:i:2:p:375-92 is not listed on IDEAS
    3. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    4. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    5. Jay Cao & Jacky Chen & John Hull, 2020. "A neural network approach to understanding implied volatility movements," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1405-1413, September.
    6. Jian Huang & Junyi Chai & Stella Cho, 2020. "Deep learning in finance and banking: A literature review and classification," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-24, December.
    7. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunhui Qiao & Xiangwei Wan, 2024. "Enhancing Black-Scholes Delta Hedging via Deep Learning," Papers 2407.19367, arXiv.org, revised Aug 2024.
    2. Xia, Kun & Yang, Xuewei & Zhu, Peng, 2023. "Delta hedging and volatility-price elasticity: A two-step approach," Journal of Banking & Finance, Elsevier, vol. 153(C).
    3. Reesor, R. Mark & Stentoft, Lars & Zhu, Xiaotian, 2024. "A critical analysis of the Weighted Least Squares Monte Carlo method for pricing American options," Finance Research Letters, Elsevier, vol. 64(C).
    4. Zofia Bracha & Pawe{l} Sakowski & Jakub Micha'nk'ow, 2025. "Application of Deep Reinforcement Learning to At-the-Money S&P 500 Options Hedging," Papers 2510.09247, arXiv.org.
    5. Thierry Warin & Aleksandar Stojkov, 2021. "Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature," JRFM, MDPI, vol. 14(7), pages 1-31, July.
    6. Fuwei Jiang & Jie Kang & Ruzheng Tian & Qingdong Xu, 2025. "Black‐Scholes Meet Imitation Learning: Evidence From Deep Hedging in China," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(8), pages 1071-1087, August.
    7. Ajitha Kumari Vijayappan Nair Biju & Ann Susan Thomas & J Thasneem, 2024. "Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 849-878, February.
    8. Xianhua Peng & Xiang Zhou & Bo Xiao & Yi Wu, 2024. "A Risk Sensitive Contract-unified Reinforcement Learning Approach for Option Hedging," Papers 2411.09659, arXiv.org.
    9. Zheng Gong & Carmine Ventre & John O'Hara, 2021. "The Efficient Hedging Frontier with Deep Neural Networks," Papers 2104.05280, arXiv.org.
    10. Joao Felipe Gueiros & Hemanth Chandravamsi & Steven H. Frankel, 2025. "Deep Learning vs. Black-Scholes: Option Pricing Performance on Brazilian Petrobras Stocks," Papers 2504.20088, arXiv.org.
    11. Will Hicks, 2020. "Pseudo-Hermiticity, Martingale Processes and Non-Arbitrage Pricing," Papers 2009.00360, arXiv.org, revised Apr 2021.
    12. Marta Biancardi & Giovanni Villani, 2017. "Robust Monte Carlo Method for R&D Real Options Valuation," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 481-498, March.
    13. Timothy DeLise, 2021. "Neural Options Pricing," Papers 2105.13320, arXiv.org.
    14. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    15. Wang, Jingxing & Chung, Seokhyun & AlShelahi, Abdullah & Kontar, Raed & Byon, Eunshin & Saigal, Romesh, 2021. "Look-ahead decision making for renewable energy: A dynamic “predict and store” approach," Applied Energy, Elsevier, vol. 296(C).
    16. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    17. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    19. Piotr Komański & Oskar Sokoliński, 2015. "Least-Squares Monte Carlo Simulation for Time Value of Options and Guarantees Calculation," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 41.
    20. Anindya Goswami & Nimit Rana, 2024. "A market resilient data-driven approach to option pricing," Papers 2409.08205, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.