IDEAS home Printed from https://ideas.repec.org/p/bge/wpaper/1518.html

Box Confidence Depth: Simulation-Based Inference with Hyper-Rectangles

Author

Listed:
  • Elena Bortolato
  • Laura Ventura

Abstract

This work presents a novel simulation-based approach for constructing confidence regions in parametric models, which is particularly suited for generative models and situations where limited data and conventional asymptotic approximations fail to provide accurate results. The method leverages the concept of data depth and depends on creating random hyper-rectangles, i.e. boxes, in the sample space generated through simulations from the model, varying the input parameters. A probabilistic acceptance rule allows to retrieve a Depth-Confidence Distribution for the model parameters from which point estimators as well as calibrated confidence sets can be read-off. The method is designed to address cases where both the parameters and test statistics are multivariate.

Suggested Citation

  • Elena Bortolato & Laura Ventura, 2025. "Box Confidence Depth: Simulation-Based Inference with Hyper-Rectangles," Working Papers 1518, Barcelona School of Economics.
  • Handle: RePEc:bge:wpaper:1518
    as

    Download full text from publisher

    File URL: https://bw.bse.esgallapre3.com/wp-content/uploads/2025/10/1518.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David T. Frazier & David J. Nott & Christopher Drovandi & Robert Kohn, 2023. "Bayesian Inference Using Synthetic Likelihood: Asymptotics and Adjustments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2821-2832, October.
    2. Simon N. Wood, 2010. "Statistical inference for noisy nonlinear ecological dynamic systems," Nature, Nature, vol. 466(7310), pages 1102-1104, August.
    3. E C Kenne Pagui & A Salvan & N Sartori, 2017. "Median bias reduction of maximum likelihood estimates," Biometrika, Biometrika Trust, vol. 104(4), pages 923-938.
    4. Azzalini, Adelchi & Menardi, Giovanna, 2014. "Clustering via Nonparametric Density Estimation: The R Package pdfCluster," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i11).
    5. Dungang Liu & Regina Y. Liu & Min-ge Xie, 2022. "Nonparametric Fusion Learning for Multiparameters: Synthesize Inferences From Diverse Sources Using Data Depth and Confidence Distribution," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 2086-2104, October.
    6. Min-ge Xie & Kesar Singh, 2013. "Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review," International Statistical Review, International Statistical Institute, vol. 81(1), pages 3-39, April.
    7. D T Frazier & G M Martin & C P Robert & J Rousseau, 2018. "Asymptotic properties of approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 105(3), pages 593-607.
    8. repec:dau:papers:123456789/5724 is not listed on IDEAS
    9. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    2. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    3. Henri Pesonen & Umberto Simola & Alvaro Köhn‐Luque & Henri Vuollekoski & Xiaoran Lai & Arnoldo Frigessi & Samuel Kaski & David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Jukka Corander, 2023. "ABC of the future," International Statistical Review, International Statistical Institute, vol. 91(2), pages 243-268, August.
    4. Jonathan U Harrison & Ruth E Baker, 2020. "An automatic adaptive method to combine summary statistics in approximate Bayesian computation," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    5. Dyer, Joel & Cannon, Patrick & Farmer, J. Doyne & Schmon, Sebastian M., 2024. "Black-box Bayesian inference for agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 161(C).
    6. Jon Devlin & Agnieszka Borowska & Dirk Husmeier & John Mackenzie, 2025. "Approximate Bayesian inference in a model for self-generated gradient collective cell movement," Computational Statistics, Springer, vol. 40(7), pages 3399-3452, September.
    7. Farmer, J. Doyne & Dyer, Joel & Cannon, Patrick & Schmon, Sebastian, 2022. "Black-box Bayesian inference for economic agent-based models," INET Oxford Working Papers 2022-05, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    8. Anthony Ebert & Kerrie Mengersen & Fabrizio Ruggeri & Paul Wu, 2021. "Curve Registration of Functional Data for Approximate Bayesian Computation," Stats, MDPI, vol. 4(3), pages 1-14, September.
    9. Yannik Schälte & Jan Hasenauer, 2023. "Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation," PLOS ONE, Public Library of Science, vol. 18(5), pages 1-21, May.
    10. Delbianco Fernando & Tohmé Fernando, 2023. "What is a relevant control?: An algorithmic proposal," Asociación Argentina de Economía Política: Working Papers 4643, Asociación Argentina de Economía Política.
    11. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    12. repec:osf:osfxxx:enzgs_v1 is not listed on IDEAS
    13. Luis Alvarez & Cristine Pinto & Vladimir Ponczek, 2022. "Homophily in preferences or meetings? Identifying and estimating an iterative network formation model," Papers 2201.06694, arXiv.org, revised Mar 2025.
    14. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    15. Samson, Adeline & Tamborrino, Massimiliano & Tubikanec, Irene, 2025. "Inference for the stochastic FitzHugh-Nagumo model from real action potential data via approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
    16. Guang Yang & Dungang Liu & Junyuan Wang & Min‐ge Xie, 2016. "Meta‐analysis framework for exact inferences with application to the analysis of rare events," Biometrics, The International Biometric Society, vol. 72(4), pages 1378-1386, December.
    17. Georgia Koppe & Hazem Toutounji & Peter Kirsch & Stefanie Lis & Daniel Durstewitz, 2019. "Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-35, August.
    18. Barde, Sylvain, 2024. "Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    19. Forneron, Jean-Jacques & Ng, Serena, 2018. "The ABC of simulation estimation with auxiliary statistics," Journal of Econometrics, Elsevier, vol. 205(1), pages 112-139.
    20. George Karabatsos, 2023. "Approximate Bayesian computation using asymptotically normal point estimates," Computational Statistics, Springer, vol. 38(2), pages 531-568, June.
    21. Niyousha Hosseinichimeh & Hazhir Rahmandad & Mohammad S. Jalali & Andrea K. Wittenborn, 2016. "Estimating the parameters of system dynamics models using indirect inference," System Dynamics Review, System Dynamics Society, vol. 32(2), pages 154-178, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:1518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bruno Guallar (email available below). General contact details of provider: https://edirc.repec.org/data/bargses.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.