IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i540p2086-2104.html
   My bibliography  Save this article

Nonparametric Fusion Learning for Multiparameters: Synthesize Inferences From Diverse Sources Using Data Depth and Confidence Distribution

Author

Listed:
  • Dungang Liu
  • Regina Y. Liu
  • Min-ge Xie

Abstract

Fusion learning refers to synthesizing inferences from multiple sources or studies to make a more effective inference and prediction than from any individual source or study alone. Most existing methods for synthesizing inferences rely on parametric model assumptions, such as normality, which often do not hold in practice. We propose a general nonparametric fusion learning framework for synthesizing inferences for multiparameters from different studies. The main tool underlying the proposed framework is the new notion of depth confidence distribution (depth-CD), which is developed by combining data depth and confidence distribution. Broadly speaking, a depth-CD is a data-driven nonparametric summary distribution of the available inferential information for a target parameter. We show that a depth-CD is a powerful inferential tool and, moreover, is an omnibus form of confidence regions, whose contours of level sets shrink toward the true parameter value. The proposed fusion learning approach combines depth-CDs from the individual studies, with each depth-CD constructed by nonparametric bootstrap and data depth. The approach is shown to be efficient, general and robust. Specifically, it achieves high-order accuracy and Bahadur efficiency under suitably chosen combining elements. It allows the model or inference structure to be different among individual studies. And, it readily adapts to heterogeneous studies with a broad range of complex and irregular settings. This last property enables the approach to use indirect evidence from incomplete studies to gain efficiency for the overall inference. We develop the theoretical support for the proposed approach, and we also illustrate the approach in making combined inference for the common mean vector and correlation coefficient from several studies. The numerical results from simulated studies show the approach to be less biased and more efficient than the traditional approaches in nonnormal settings. The advantages of the approach are also demonstrated in a Federal Aviation Administration study of aircraft landing performance. Supplementary materials for this article are available online.

Suggested Citation

  • Dungang Liu & Regina Y. Liu & Min-ge Xie, 2022. "Nonparametric Fusion Learning for Multiparameters: Synthesize Inferences From Diverse Sources Using Data Depth and Confidence Distribution," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 2086-2104, October.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2086-2104
    DOI: 10.1080/01621459.2021.1902817
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.1902817
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.1902817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2086-2104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.